簡易檢索 / 詳目顯示

研究生: 張仲翔
Chang, Chung-Hsiang
論文名稱: 高壓觸媒燃燒之研究
A study of high-pressure catalytic combustion
指導教授: 趙怡欽
Chao, Yei-Chin
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 108
中文關鍵詞: 高壓觸媒燃燒觸媒觸媒燃燒
外文關鍵詞: catalytic combustion, catalyst, high-pressure catalytic combustion
相關次數: 點閱:68下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本研究主要以數值方法與實驗來探討壓力對觸媒燃燒之影響。一般傳統氣渦輪引擎之燃燒室設計,前端主燃區維持火焰以接近1.0的當量比燃燒,後端稀釋區則導入大量空氣作冷卻與調整溫度的設計,有高污染、局部高溫、增加引擎尺寸之缺點;由於新一代氣渦輪引擎,燃燒室設計採用貧油預混(lean premixed combustion)與觸媒燃燒(catalytic combustion)技術,控制燃氣溫度分佈並以較低的燃燒溫度抑制NOx的形成與排放。採用觸媒作為燃燒室的概念運用在氣渦輪引擎上,諸多文獻中都肯定利用觸媒穩駐貧油預混燃燒技術的低污染與高效率,觸媒燃燒室可在貧油情況下穩駐燃燒,低燃料濃度下燃燒溫度低,毋需混入冷卻空氣進行冷卻,燃燒室出口溫度分佈均勻,簡化燃燒室設計並且保護渦輪,有效改善目前氣渦輪燃燒室大部份的缺點。而對於目前觸媒氣渦輪引擎之燃燒室,從引擎的冷啟動至穩定運轉的過程中,觸媒燃燒室會從常壓提升至某一高壓。因此,壓力對於觸媒點燃至穩駐燃燒的影響以實驗和數值分析來觀察與驗證觸媒內受到壓力影響後的反應變化為本文主要研究的內容。
      在設計觸媒燃燒室上除了使用觸媒燃燒技術外也使用分段式觸媒,而在觸媒燃燒室出口設計一漸縮口以建立觸媒燃燒室之壓力,對於燃料與空氣的預混合段,採用靜態混合器達到混合均勻以避免觸媒產生熱點造成燃燒效率下降與觸媒的損壞;觸媒段採用分段式結構以避免單一觸媒有太大的溫度梯度造成觸媒損壞,而燃料則採用預熱空氣溫度較低就可點燃的丙烷作為主要燃料,分別測試在不需預燃預熱的情況下,以預通氫氣啟動觸媒燃燒反應輔助丙烷點燃於觸媒床上,作為低溫啟動程序;以及測試在預熱空氣下穩駐觸媒燃燒反應,並且於觸媒後氣相反應段穩駐維持氣相反應,預熱空氣為模擬觸媒氣渦輪引擎在實際運轉時之空氣經過壓縮機與熱交換器進入觸媒燃燒室的溫度。另外,為了能夠進一步瞭解觸媒內受壓力的影響變化,在觸媒燃燒室挖凹槽埋設石英玻璃來量測觸媒壁面溫度之變化以利更進一步的觀察與數值模擬,利用實驗和數值模擬來觀察氫氣在鉑(Pt)觸媒孔內受壓力影響後的變化。
      觸媒燃燒室測試結果顯示在沒有預燃預熱的情況下,使用氫氣輔助丙烷於觸媒點燃時,些許的壓力就會造成觸媒反應下降,而預熱空氣於丙烷之穩駐燃燒,都會產生壓力越大觸媒表面反應越差的現象,使得觸媒燃燒室溫度隨著壓力增加而降低,也使得燃燒效率與轉化率下降,而壓力的增加會導致觸媒反應延遲,因此對於在高壓下必須選擇適當之觸媒長度以維持轉化率。數值模擬與實驗可以觀察與驗證觸媒內受到壓力影響後的反應變化,整體而言,壓力的增加對觸媒有負面的影響,壓力增加會使氣體擴散係數降低,反應物和產物向徑向傳遞的速率減少時,只易消耗在近壁面的反應物,使得化學反應都發生在觸媒壁面,而因壓力增加的大量燃料則需要更多的時間在觸媒內才能反應完全或是需要點燃氣相反應來提高燃燒效率。

      The effects of pressure on the performance and reaction characteristics of catalytic combustion in a catalytic combustion camber are studied by using both numerical and experimental methods. For conventional gas turbine combustor design, near stoichiometric combustion is maintained in the primary zone and large amount of cold air are injected in the rear dilution zone to cool and to modify the hot burnt stream for turbine. This conventional combustor design usually renders shortcomings of high (NOx) emissions, local hot spots, and increased engine size. For the new century, lean premixed combustion and catalytic combustion techniques are two new combustion techniques receiving intensive attention that produce very low NOx yield by operating in lower temperature range. It has been confirmed in the literature that catalytically stabilized lean premixed combustion technique can be applied to gas turbine engine to achieve the goal of high efficiency and low emissions. Catalytic combustor design operated in ultra-lean condition can provide remedies for almost all the defects of the traditional combustor, such as, low temperature operation with low NOx emission, simplification of complicated combustor design, good exit temperature pattern factor, eliminate the risk of hot spots due to dilution mixing, etc. In the operation of the gas turbine engine, the combustor pressure will increase from atmospheric pressure to a specific high pressure when the engine is started from cold to a stable operation condition. However, the studies of the high pressure performance of the catalytic combustor are scarce and the studies are warranted. Therefore, the objective of this thesis is to observe and study by using experimental and numerical techniques the effects of pressure on the performance of the catalyst from ignition until stable reaction.
      For the design of the catalytic combustor, incentive designs are employed, such as: catalyst staging to eliminate the risk of catalyst failure due to steep temperature gradient and static mixers for uniform fuel–air mixing for high efficient catalytic combustion performance. Propane is used as the fuel. Tests of the combustor performance include, hydrogen-assisted cold ignition of propane catalytic combustion and preheated-air ignition of propane catalytic combustion to simulate the hot compressed and regenerated air conditions at the combustor inlet for a real engine operation. In addition to catalytic engine tests, a laboratory hydrogen catalytic combustor with honey comb Pt catalyst sector and quartz window is devised for experimental observation and measurements and for detailed numerical simulation and verification.
      The results showed that increasing pressure has a negative effect on catalytic combustion in the combustor as they are usually operated on surface reaction conditions. As pressure is increased, the rate of reactant and product diffusion to and from the catalyst bed is reduced and increased fuel flow rate due to pressure increase will require more time to complete reaction on the catalyst surface in view of limited active sites. These effects will practically reduce the reaction and performance of the catalytic combustion in the combustor. On the other hand, instead of surface reaction, igniting gas phase reaction may specifically increase the combustion efficiency in high pressure.

    目錄 摘要 I ABSTRACT IV 誌謝 VII 目錄 VIII 表目錄 X 圖目錄 XI 第一章 緒論 1 1.1前言 1 1.2觸媒燃燒基本原理 2 第二章 文獻回顧與研究目的 5 2.1文獻回顧 5 2.2研究動機與目的 12 第三章 數值分析與方法 15 3.1統馭方程式 16 3.2數值方法 19 第四章 實驗設備與方法 22 4.1 燃料空氣預混段 22 4.2高壓觸媒燃燒測試設備 27 4.3量測設備 35 第五章 實驗結果與討論 39 5.1靜態混合器混合效果測試 39 5.2數值分析高壓觸媒燃燒 43 5.3氫氣於高壓下輔助丙烷於觸媒點燃與穩駐燃燒測試 47 5.4討論 50 第六章 結論 52 第七章 未來工作 54 參考文獻 55 自述 108

    參考文獻
    Blumrich S., Engler B.,(1992),“New developments in catalytic combustion for industrial gas turbines,” Proceedings of the I. Mech. E., Combustion in Engines, Technology, Applications & the Environments, I. Mech. E.,C448/065, pp.227-233.
    Becker, H. A.,(1977), “Mixing, concentration fluctuations, and marker nephelometry,” New York:Academic Press, vol.2, pp.45-139.
    Chou, C.-P., Chen J.-Y.,(2000),“Numerical studies of methane catalytic combustion inside a monolith honeycomb reactor using multi-step surface reactions,” Combustion Science and Technology, vol.150, pp27-57.
    Cohn, G., Steele, D., and Andersen, H.,(1961),“Nitric acid tail gas abatement,” U.S. Patent 2975025.
    Cho, P., and Law, C. K,(1986),“Catalytic ignition of fuel oxygen/nitrogen mixture over platinum,” Combustion and Flame, vol.66, pp.159-170.
    Coltrin, M. E., Kee, R. J., Rupley, F. M., and Mooks, E.,(1996), ”A fortran package for analyzing heterogeneous chemical kinetics at a solid-surface-gas-phase interface,” Sandia National Laboratories Report, SAND96-8217.
    Dalla Betta, R. A., (1995),“Catalytic combustion technology to achieve ultra low NOx emissions:Catalyst design and performance characteristics,” Catalysis Today, vol.26, pp.329-335.
    Danckwert, P. V.,(1952),“The definition and measurement of so-me characteristics of mixtures,” Applied Scientific Research, Sec. A, vol.3, pp.279-296.
    Deutschmann, O., Maier, L. I., Riedel,U., Stroemman, A. H. and Dibble, R. W.,(2000),“Hydrogen assisted catalytic combustion of methane on platinum,” Catalysis Today, vol.59, pp.141-150.
    Deutschmann, O.,(1996), ”Numerical modeling of catalytic ignition,” Proceedings of the Combustion Institute, Vol. 26, pp.1747-1754.
    Fernandes, N.E., Park, Y.K., and Vlachos, D.G., (1999), “The auto-thermal behavior of catalyzed hydrogen oxidation: experiments and modeling,” Combustion and Flame, vol. 118, pp.164-178.
    Fulle, E. N., Schettler, P. D., and Giddings, J. C.,(1966),“A new method for prediction of binary gas-phase diffusion coefficients,” Industrial and Engineering Chemistry,58(5), pp.19-27.
    Han, J. M.,(1991),“Manipulation of a circular jet by acoustic excitation,”Ph. D. Dissertation, Institute of Aeronautics and Astronautics National Cheng Kung University, Taiwan.
    Hayashi, S., Yamada H., Shimodaira K.,(1995),“High-pressure reaction and emissions characteristics of catalytic reactor for gas turbine combustors,” Catalysis Today, vol.26, pp.319-327.
    Hsu, H. W.,(2004),“The characteristics of hydrogen-assisted catalytic ignition methane,” Ph. D. Dissertation, Institute of Aeronautics and Astronautics National Cheng Kung University, Taiwan.
    John, M.,(2004),”Catalytic combustion of hydrogen-air mixtures over platinum:validation of hetero/homogeneous chemical reaction schemes,” Clean air, vol.5, pp21-44.
    Kuper, W.J., Blaauw, M.,(1999),“Catalytic combustion concept for gas turbine,” Catalysis Today, vol.47, pp.377-389.
    Kee, R J., Rupley, F. M., Meeks, E., and Miller, J. A.,(1996),”Chemikin-Ⅲ:a fortran chemical kinetics package for the analysis of gas phase chemical and plasma kinetics,” Sandia National Laboratories Report, SAND96-8216.
    Long, M.B. ,(1993),“Differential diffusion in jets using joint PLIF and Lorenz-Mie imaging,” Combustion Science and Technology, vol.92, pp.209-224.
    Miller, J. A., Bowman, C. T., (1996),”Mechanism and modeling of nitrogen chemistry in combustion ,” Progress In Energy and Combustion Science, Vol. 15, pp.287-338.
    Masao, T., Junko K.,(1997),“Experimental analysis of C3H8 catalytic combustion in a honeycomb monolith Pt catalyst,” The First Asia-Pacific Conference on Combustion, pp.555-558.
    Michael, R., John M., (2002),“Homogeneous ignition in high-pressure combustion of methane/air over platinum:comparison of measurements and detailed numerical predictions,” Proceeding of the Combustion Institute, vol. 29, pp1021-1029.
    Michael, R., John M.,(2004),“High-pressure catalytic combustion of methane over platinum:in situ experiments and detailed numerical predictions,” Combustion and Flame, vol.136, pp217-240.
    Ozawa, Y., Fujii, T.,(1999),“Development of a catalytically assisted combustor for a gas turbine,” Catalysis Today, vol.47, pp399-405.
    Pfefferle, W. C. and Pfefferle, L. D., (1986),“Catalytically stabilized combustion,” Progress in Energy and Combustion Science, vol.12 , pp.25-41.
    Pfefferle, L. D. and Pfefferle, W. C., (1987), “Catalysis combustion,” Catalytic Review-Science Engineer, vol. 29, pp.219-267.
    Richard, C., Timothy G.,“High-pressure experiments and modeling of methane/air catalytic combustion for power-generation application,” Catalysis Today, vol.83, pp157-170.
    Sorab, R.V.,(1997),“Low-emission gas turbines using catalytic combustion,” Energy Convers. Mgmt, vol.38, pp.1327-1334.
    Takeuchi, M., Konno, J., (1997),“Experimental analysis ofC3H8 catalytic combustion in a honeycomb monolith Pt catalyst,” The First Asia-Pacific Conference on Combustion, pp.555-558.
    Veser, G., Zizuddin, M., (1999),“Ignition in alkane oxidation on noble-metal catalyst,” Catalysis Today, vol.47, pp.219-228.
    許紘瑋,(1998), “觸媒穩駐燃燒之初步研究,”國立成功大學航空太空工程研究所碩士論文
    陳建安,(2003), “過氧化氫觸媒雙推進劑熱機引擎之研發,”國立成功大學航空太空工程研究所碩士論文.
    謝維昇,(2002), “觸媒氣渦輪引擎原形之發展,”國立成功大學航空太空工程研究所碩士論文.

    下載圖示 校內:2006-07-27公開
    校外:2006-07-27公開
    QR CODE