簡易檢索 / 詳目顯示

研究生: 羅翊展
Luo, Yi-Zhan
論文名稱: 從含鋅的鹽酸廢液中回收鋅的開發與研究
Development and research on recovering zine from zinc-containing hydrochloric acid waste liquid
指導教授: 施士塵
Shi, Shih-Chen
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2025
畢業學年度: 114
語文別: 中文
論文頁數: 79
中文關鍵詞: 鋅回收沉澱法碳酸鈉鹼式碳酸鋅酸洗廢液pH控制中性滴加法資源再利用
外文關鍵詞: zinc recovery, precipitation method, sodium carbonate, basic zinc carbonate, pickling wastewater, pH control, neutral drop method, resource recycling
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究旨在開發一套能有效且簡易地從含鋅鹽酸廢液中回收鋅的沉澱法技術,以實現資源再利用與環境友善處理。實驗中選用碳酸鈉(Na2CO3)作為沉澱劑,透過控制pH值與反應環境來優化鋅的去除效率與產物純度。實驗結果顯示,鋅離子(Zn2+)可經沉澱方式由原始濃度約259400 ppm有效降至最低約2 ppm以下,且沉澱產物經XRD分析證實主要為鹼式碳酸鋅(Zn5(OH)6(CO3)2),具有與碳酸鋅相當的應用潛力。研究亦指出,反應pH值在中性至弱鹼性區間(pH 7.0~9.0)下更有利於目標產物的生成;而同步滴加法搭配中性水緩衝可有效避免局部pH劇烈波動,進一步提升產物均勻性與反應穩定性。此研究證明沉澱法具備回收鋅與環境治理的雙重效益,為工業廢液處理提供可行技術方案。

    This study aimed to develop an effective and simple precipitation technology for zinc recovery from zinc-containing hydrochloric acid wastewater, achieving resource reuse and environmentally friendly treatment. Sodium carbonate (Na2CO3) was used as the precipitant, and the pH and reaction environment were manipulated to optimize zinc removal efficiency and product purity. Experimental results showed that precipitation effectively reduced zinc ion (Zn2+) concentration from an initial concentration of approximately 259,400 ppm to below approximately 2 ppm. XRD analysis confirmed that the precipitated product was primarily basic zinc carbonate (Zn5(OH)6(CO3)2), demonstrating comparable application potential to zinc carbonate. The study also demonstrated that a neutral to slightly alkaline pH range (pH 7.0-9.0) favored the formation of the target product. Furthermore, the simultaneous addition method with neutral water buffering effectively avoided local pH fluctuations, further improving product uniformity and reaction stability. This study demonstrates that precipitation offers the dual benefits of zinc recovery and environmental remediation, providing a viable technical solution for industrial wastewater treatment.

    摘要 I ABSTRACT II 致謝 XII 表目錄 XVII 圖目錄 XIX 第1章 緒論 1 1-1. 前言 1 1-1-1. 熱浸鍍鋅製程 2 1-1-2. 廢液處理 3 1-1-3. 鋅與含鋅礦物 4 1-1-4. 城市採礦(CITY MINING) 5 1-2. 研究動機 6 1-3. 文獻回顧 7 1-3-1. 獲取鋅的方式 7 1-3-2. 沉澱法應用 9 1-3-3. 產物回收應用 11 1-4. 研究歷程與目標 13 1-4-1. 以沉澱法分離酸液之鋅離子 13 1-4-2. 不同PH值沉澱不同產物 14 1-4-3. 中性環境調節PH衝突 14 第2章 應用理論 15 2-1. 沉澱法 15 2-1-1. 沉澱反應機制 16 2-2. PH值對鋅濃度的影響 17 2-2-1. 鋅離子游離狀態 17 2-2-2. 水解反應 18 2-2-3. 反應衝突問題 19 2-3. 沉澱產物與反應環境之關係 20 2-3-1. 氫氧根離子(OH-)之影響 20 2-3-2. 溶解度積(KSP)和離子積(Q) 20 2-4. 中性環境調節 23 第3章 實驗方法與設備 24 3-1 沉澱法降低鋅濃度 24 3-1-1 實驗材料 24 3-1-2 實驗流程 24 3-2 PH值對鋅濃度之影響 25 3-2-1. 實驗材料 25 3-2-2. 實驗流程 25 3-3 中性環境沉澱產物 26 3-3-1 實驗材料 26 3-3-2 實驗流程 26 3-4 實驗設備 27 第4章 結果與討論 28 4-1. 使用沉澱法降低鋅濃度 28 4-1-1. 攪拌時間對於降低鋅濃度的影響 28 4-2. PH值對降低鋅濃度的影響 30 4-2-1. 添加量對鋅濃度的影響 30 4-2-2. PH值對應溶液的變化 31 4-2-3. PH控制區間對鋅濃度的影響 35 4-3. 沉澱產物與反應環境之關係 36 4-3-1. 溶解度積(KSP)與離子積(Q)比較 36 4-3-2. 鹼性環境產物 38 4-3-3. 中性環境調節法 40 4-4. 實驗成本與產物價值 43 第5章 總結 44 參考文獻 45 附錄A 實驗參數詳細過程 51 附錄B 參數詳細計算過程 54 B-1. 離子濃度之詳細計算過程 54 B-2. 離子積(Q)之詳細計算過程 55 B-3. 產物成本計算 56

    1. Qadir, M.; P. Drechsel; B. Jiménez Cisneros; Y. Kim; A. Pramanik; P. Mehta.;O. Olaniyan, Global and regional potential of wastewater as a water, nutrient and energy source. Natural resources forum 2020, 44,40-51.
    2. Dutta, D.; S. Arya.;S. Kumar, Industrial wastewater treatment: Current trends, bottlenecks, and best practices. Chemosphere 2021, 285,131245.
    3. Praveen, S.; R. Gokulan; T.B. Pushpa.;J. Jegan, Techno-economic feasibility of biochar as biosorbent for basic dye sequestration. Journal of the Indian Chemical Society 2021, 98,100107.
    4. Chea, J.D.; A. Christon; V. Pierce; J.H. Reilly; M. Russ; M. Savelski; C.S. Slater.;K.M. Yenkie, Framework for solvent recovery, reuse, and recycling in industries. Computer Aided Chemical Engineering 2019, 47,199-204.
    5. Morera, S.; L. Corominas; M. Poch; M. Aldaya.;J. Comas, Water footprint assessment in wastewater treatment plants. Journal of Cleaner Production 2016, 112,4741-4748.
    6. Yu, Z.; J. Hu.;H. Meng, A review of recent developments in coating systems for hot-dip galvanized steel. Frontiers in Materials 2020, 7,74.
    7. Vourlias, G.; N. Pistofidis; E. Pavlidou; G. Stergioudis.;E. Polychroniadis, Study of the structure of hot-dip galvanizing byproducts. Journal of optoelectronics and advanced materials 2007, 9,2937.
    8. Mokarram, M.; A. Saber.;V. Sheykhi, Effects of heavy metal contamination on river water quality due to release of industrial effluents. Journal of Cleaner Production 2020, 277,123380.
    9. Zhang, J., The impact of water quality on health: Evidence from the drinking water infrastructure program in rural China. Journal of health economics 2012, 31,122-134.
    10. Kaya, M.; S. Hussaini.;S. Kursunoglu, Critical review on secondary zinc resources and their recycling technologies. Hydrometallurgy 2020, 195,105362.
    11. Abkhoshk, E.; E. Jorjani; M. Al-Harahsheh; F. Rashchi.;M. Naazeri, Review of the hydrometallurgical processing of non-sulfide zinc ores. Hydrometallurgy 2014, 149,153-167.
    12. Spani, R.C., The new circular economy action plan. FEEM policy brief 2020.
    13. Xavier, L.H.; M. Ottoni.;L.P.P. Abreu, A comprehensive review of urban mining and the value recovery from e-waste materials. Resources, conservation and recycling 2023, 190,106840.
    14. Yang, C.; J. Li; Q. Tan; L. Liu.;Q. Dong, Green process of metal recycling: coprocessing waste printed circuit boards and spent tin stripping solution. ACS Sustainable Chemistry & Engineering 2017, 5,3524-3534.
    15. Chen, W.; Y. Dai; Z. Liu.;H. Zhang, The evolution of global zinc trade network: Patterns and implications. Resources Policy 2024, 90,104727.
    16. Research, V.M., Zinc Recycling Market Size And Forecast. 2024. https://www.verifiedmarketresearch.com/product/zinc-recycling-market.
    17. CGTN, China's zinc recycling industry sees sustainable growth. 2017. https://news.cgtn.com/news/3d49544e3459444e/share_p.html.
    18. Singh, V.; G. Ahmed; S. Vedika; P. Kumar; S.K. Chaturvedi; S.N. Rai; E. Vamanu.;A. Kumar, Toxic heavy metal ions contamination in water and their sustainable reduction by eco-friendly methods: isotherms, thermodynamics and kinetics study. Scientific Reports 2024, 14,7595.
    19. News, V., Sewage-Polluted Lake Water Kills Rhinos, Other Wildlife in Zimbabwe. 2024. https://www.voanews.com/a/sewage-polluted-lake-water-kills-rhinos-other-wildlife-in-zimbabwe/7905685.html.
    20. Lupankwa, K.; D. Love; B. Mapani.;S. Mseka, Impact of a base metal slimes dam on water systems, Madziwa Mine, Zimbabwe. Physics and Chemistry of the Earth, Parts A/B/C 2004, 29,1145-1151.
    21. Zueva, S.B.; F. Ferella; V. Innocenzi; I. De Michelis; V. Corradini; N.M. Ippolito.;F. Vegliò, Recovery of zinc from treatment of spent acid solutions from the pickling stage of galvanizing plants. Sustainability 2021, 13,407.
    22. Mitovski, A.; N. Štrbac; D. Živković; L. Balanović; D. Manasijević; M. Sokić; V. Grekulović.;R. Nikolić, A Comparative Review of Pyrometallurgical and Hydrometallurgical Processes of Copper Production from E-Waste Based on Environmental and Economic Parameters. 4 TH INTERNATIONAL SYMPOSIUM ON ENVIRONMENTAL AND MATERIAL FLOW MANAGEMENT 2014, 120.
    23. Rudnik, E., Recovery of zinc from zinc ash by leaching in sulphuric acid and electrowinning. Hydrometallurgy 2019, 188,256-263.
    24. Ghayad, I.M.; A.L. El-Ansary; Z.A. Abdel Aziz.;A.A. El-Akshr, Recovery of zinc from zinc dross using pyrometallurgical and electrochemical methods. Egyptian Journal of Chemistry 2019, 62,373-384.
    25. Buzatu, T.; G. Popescu; I. Birloaga.;S. Săceanu, Study concerning the recovery of zinc and manganese from spent batteries by hydrometallurgical processes. Waste management 2013, 33,699-705.
    26. Mocellin, J.; G. Mercier; J.-L. Morel; P. Charbonnier; J.-F. Blais.;M.-O. Simonnot, Recovery of zinc and manganese from pyrometallurgy sludge by hydrometallurgical processing. Journal of Cleaner Production 2017, 168,311-321.
    27. Palimąka, P.; S. Pietrzyk; M. Stępień; K. Ciećko.;I. Nejman, Zinc recovery from steelmaking dust by hydrometallurgical methods. Metals 2018, 8,547.
    28. Sadeghi, S.M.; J. Jesus.;H.M. Soares, A critical updated review of the hydrometallurgical routes for recycling zinc and manganese from spent zinc-based batteries. Waste Management 2020, 113,342-350.
    29. Kongolo, K.; M. Mwema; A. Banza.;E. Gock, Cobalt and zinc recovery from copper sulphate solution by solvent extraction. Minerals Engineering 2003, 16,1371-1374.
    30. Zhu, Z.; W. Zhang; Y. Pranolo.;C. Cheng, Separation and recovery of copper, nickel, cobalt and zinc in chloride solutions by synergistic solvent extraction. Hydrometallurgy 2012, 127,1-7.
    31. Dvořák, P..;J. Jandova, Hydrometallurgical recovery of zinc from hot dip galvanizing ash. Hydrometallurgy 2005, 77,29-33.
    32. Xanthopoulos, P.; S. Agatzini-Leonardou; P. Oustadakis.;P. Tsakiridis, Zinc recovery from purified electric arc furnace dust leach liquors by chemical precipitation. Journal of environmental chemical engineering 2017, 5,3550-3559.
    33. Wang, L.P..;Y.J. Chen, Sequential precipitation of iron, copper, and zinc from wastewater for metal recovery. Journal of Environmental Engineering 2019, 145,04018130.
    34. Zhou, K.; Y. Wu; X. Zhang; C. Peng; Y. Cheng.;W. Chen, Removal of Zn (II) from manganese-zinc chloride waste liquor using ion-exchange with D201 resin. Hydrometallurgy 2019, 190,105171.
    35. Sethurajan, M.; P.N. Lens; E.R. Rene; J. van de Vossenberg; D. Huguenot; H.A. Horn; L.H. Figueiredo.;E.D. van Hullebusch, Bioleaching and selective biorecovery of zinc from zinc metallurgical leach residues from the Três Marias zinc plant (Minas Gerais, Brazil). Journal of Chemical Technology & Biotechnology 2017, 92,512-521.
    36. de Souza, A.D.; P.S. Pina.;V.A. Leão, Bioleaching and chemical leaching as an integrated process in the zinc industry. Minerals Engineering 2007, 20,591-599.
    37. Fu, F..;Q. Wang, Removal of heavy metal ions from wastewaters: a review. Journal of environmental management 2011, 92,407-418.
    38. Uekawa, N.; R. Yamashita; Y.J. Wu.;K. Kakegawa, Effect of alkali metal hydroxide on formation processes of zinc oxide crystallites from aqueous solutions containing Zn (OH) 4 2− ions. Physical Chemistry Chemical Physics 2004, 6,442-446.
    39. Leszczyńska-Sejda, K.; J. Malarz; D. Kopyto; K. Goc; A. Grzybek; M. Ciszewski; A. Palmowski; G. Benke.;K. Pianowska, Recovery of Zinc and Rhenium for the Production of Zinc Perrhenates. Crystals 2024, 14,725.
    40. Gosch, B., Method for the preparation of iron hydroxide, iron oxide hydrate or iron oxide from filter salts of dilute acid recovery. 2006, Google Patents.
    41. Lakkaboyana, S.K.; K. Soontarapa; N.K. Asmel; V. Kumar; R.K. Marella; A. Yuzir.;W.Z. Wan Yaacob, Synthesis and characterization of Cu (OH) 2-NWs-PVA-AC nano-composite and its use as an efficient adsorbent for removal of methylene blue. Scientific reports 2021, 11,5686.
    42. John, A.S..;K. Gurumurthy, Synthesis and Characterization of CuO Nanoparticles from Bioleached Copper through Modified and Optimized Double Precipitation Method. ACS omega 2025, 10,10193-10198.
    43. Agarwal, S.; P. Phukan; D. Sarma.;K. Deori, Versatile precursor-dependent copper sulfide nanoparticles as a multifunctional catalyst for the photocatalytic removal of water pollutants and the synthesis of aromatic aldehydes and NH-triazoles. Nanoscale Advances 2021, 3,3954-3966.
    44. Lemoine, C.; Y. Petit; T. Karaman; G. Jahrsengene; A.M. Martinez; A. Benayad.;E. Billy, Circular recycling concept for silver recovery from photovoltaic cells in Ethaline deep eutectic solvent. RSC advances 2024, 14,29174-29183.
    45. Liu, H.; P. Wang; X. Qi; J. Liu; A. Yin; Y. Wang; Y. Ye; J. Luo; Z. Ren.;S. Yu, An amorphous nickel carbonate catalyst for superior urea oxidation reaction. Journal of Electroanalytical Chemistry 2023, 949,117856.
    46. Gamage, M.E.; K.D. Ho; M.S. Kader; K. Nguyen; M. Velmurugan; S.H. McBride-Gagyi; S.W. Buckner.;P.A. Jelliss, Synthesis of Lead (II) Carbonate-Containing Nanoparticles Using Ultrasonication or Microwave Irradiation. ACS omega 2024, 9,48802-48809.
    47. Jyothilakshmi, V.; N. Bhabhina; M. Dharsana.;S. Swaminathan, Wet chemical synthesis of lead sulfide nanoparticles and its application as light harvester in photovoltaic cell. Materials Today: Proceedings 2020, 33,2125-2129.
    48. Shoppert, A.; D. Valeev; K. Alekseev.;I. Loginova, Enhanced precipitation of gibbsite from sodium aluminate solution by adding agglomerated active Al (OH) 3 seed. Metals 2023, 13,193.
    49. Battaglia, G.; M.A. Domina; R. Lo Brutto; J. Lopez Rodriguez; M. Fernandez de Labastida; J.L. Cortina; A. Pettignano; A. Cipollina; A. Tamburini.;G. Micale, Evaluation of the purity of magnesium hydroxide recovered from saltwork bitterns. Water 2022, 15,29.
    50. Yahyazadeh, A.; A.F. Mofrad; E. Yahyazadeh; M. Outokesh; S.M. Safavi; S. Kazzazi; N. Madani.;B.B. Hesari, A chronological study on formation mechanism of nesquehonite from nanoparticles to grown crystals and its application in nanoparticle synthesis. Scientific Reports 2025, 15,20956.
    51. Cao, X.; R. Zhang; H. Zhao.;R. Liu, Preparation and characterization of anhydrous magnesium carbonate: Effect of different anions of the magnesium sources. Journal of Crystal Growth 2024, 635,127583.
    52. Yusoff, N.M.; S.A. Kassim; S.A. Zubir; S. Ismail.;T.K. Abdullah, Effect of NaOH concentration and aging time on the properties of synthesized Ca (OH) 2 by sol–gel method. Materials Today: Proceedings 2022, 66,2889-2894.
    53. Kwon, H.-J.; S.-B. Han.;K.-W. Park, Antioxidant activity of hydrogen water mask pack composed of gel-type emulsion and hydrogen generation powder. International journal of molecular sciences 2020, 21,9731.
    54. Raghupathi, K.R.; R.T. Koodali.;A.C. Manna, Size-dependent bacterial growth inhibition and mechanism of antibacterial activity of zinc oxide nanoparticles. Langmuir 2011, 27,4020-4028.
    55. Göçtü, Y.; Y. Tufan.;B. Ercan, Synthesis, characterization, and biological properties of calcium and zinc based ion incorporated amorphous carbonate nanoparticles. Ceramics International 2025, 51,43-53.
    56. Zhang, S.; H. Fortier.;J. Dahn, Characterization of zinc carbonate hydroxides synthesized by precipitation from zinc acetate and potassium carbonate solutions. Materials Research Bulletin 2004, 39,1939-1948.
    57. Shamsipur, M.; S.M. Pourmortazavi; S.S. Hajimirsadeghi; M.M. Zahedi.;M. Rahimi-Nasrabadi, Facile synthesis of zinc carbonate and zinc oxide nanoparticles via direct carbonation and thermal decomposition. Ceramics International 2013, 39,819-827.
    58. Liang, W.; J. Bai; Z. Li; Y. Meng; K. Liu.;L. Li, Crystal growth, structure and thermal properties of anhydrous zinc carbonate (ZnCO3). Journal of Alloys and Compounds 2022, 898,162916.
    59. Pan, Y.-T..;D.-Y. Wang, One-step hydrothermal synthesis of nano zinc carbonate and its use as a promising substitute for antimony trioxide in flame retardant flexible poly (vinyl chloride). Rsc Advances 2015, 5,27837-27843.
    60. Alhawi, T.; M. Rehan; D. York.;X. Lai, Hydrothermal synthesis of zinc carbonate hydroxide nanoparticles. Procedia engineering 2015, 102,356-361.
    61. Balichard, K.; C. Nyikeine.;I. Bezverkhyy, Nanocrystalline ZnCO3—A novel sorbent for low-temperature removal of H2S. Journal of hazardous materials 2014, 264,79-83.
    62. Zhao, Y.; J.-b. Yu; H. Yu; M. Yang; Y. Yang; T.-q. Wang; F. Li; X.-t. Dong.;L. Xia, Preparation of hollow bidirectional porous 3D peony-flower structure ZnCO3/ZnO with gas sensitive properties at room temperature. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2023, 660,130873.
    63. Song, H.; H. Yang.;X. Ma, A comparative study of porous ZnO nanostructures synthesized from different zinc salts as gas sensor materials. Journal of alloys and compounds 2013, 578,272-278.
    64. Xu, P..;L. Deng, Fabrication of orderly changed ZnO hierarchical structures by calcining different zinc precursors and morphology-depended photocatalytic property. Inorganic Chemistry Communications 2022, 137,109215.
    65. Zeng, C.; H. Hu; X. Feng; K. Wang.;Q. Zhang, Activating CaCO3 to enhance lead removal from lead-zinc solution to serve as green technology for the purification of mine tailings. Chemosphere 2020, 249,126227.
    66. Zuddas, P..;F. Podda, Variations in physico-chemical properties of water associated with bio-precipitation of hydrozincite [Zn5 (CO3) 2 (OH) 6] in the waters of Rio Naracauli, Sardinia (Italy). Applied geochemistry 2005, 20,507-517.
    67. Denisova, K.; A. Ilyin; K. Veres.;A. Ilyin, Properties of zinc oxide adsorbent for adsorbing hydrogen sulfide. Russian Journal of Applied Chemistry 2022, 95,113-117.
    68. Anžlovar, A.; M. Marinšek; Z.C. Orel.;M. Žigon, Basic zinc carbonate as a precursor in the solvothermal synthesis of nano-zinc oxide. Materials & Design 2015, 86,347-353.
    69. Department of Chemistry, U.o.R.I., Solubility Product Constants Table. 2025. https://www.chm.uri.edu/weuler/chm112/refmater/KspTable.html.
    70. Kim, J.J., Mineral Coprecipitation and Mapping for Applications in Toxic Element Treatment and CO2 Sequestration. 2023.
    71. Wang, Y.-Y.; G.-Q. Zhou; J. Guo.;T.-Q. Liu, Controllable preparation of porous ZnO microspheres with a niosome soft template and their photocatalytic properties. Ceramics International 2016, 42,12467-12474.
    72. ChemicalBook, ZINC CARBONATE BASIC – Price. 2021. https://www.chemicalbook.com/Price/ZINC-CARBONATE-BASIC-1.htm.

    QR CODE