| 研究生: |
楊雅斐 Yang, Ya-Fei |
|---|---|
| 論文名稱: |
三段生物程序中好氧硝化槽功能評估與分生檢測生態研究 Performance Evaluation and Microbial Ecology of Nitrification in A Three-Satge Reactor |
| 指導教授: |
黃良銘
Whang, Liang-Ming 鄭幸雄 Cheng, Sheng-Shung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程學系 Department of Environmental Engineering |
| 論文出版年: | 2004 |
| 畢業學年度: | 92 |
| 語文別: | 中文 |
| 論文頁數: | 170 |
| 中文關鍵詞: | T-RFLP 、微生物生態 、有機氮 、硝化菌 、好氧硝化流體化床 |
| 外文關鍵詞: | organic nitrogen, T-RFLP, nitrifying bacteria, microbial ecology, aerobic nitrification fluidized bed |
| 相關次數: | 點閱:151 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究著重於三段式生物程序組合中硝化槽之功能評估及微生物生態探討,由於硝化菌的特性,生長緩慢,常成為氮去除的限制步驟,所以在本研究中嘗試以分子生物方法探討硝化菌群在處理含氮工業廢水之好氧系統中之特性,提供後續研究除氮程序設計之參考。
本研究接續2000~2003年以三段式流體化床生物組合程序(高溫厭氧脫氨/中溫無氧脫硝/中溫好氧硝化),處理具丙烯腈(Polyacrylonitrile, PAN)人造纖維製程廢水,此廢水成分複雜且含有抑制性難生物分解之物質,包含有機污染物及高濃度氮化物(TKN/COD = 0.15~0.26),並含有高濃度硫酸鹽(SO42- = 882~1762 mg/L),且缺乏生物作用所需磷源(TP/COD = 3.3´10-5),因此PAN廢水為難生物處理之高氮工業廢水。在三段式生物程序中,藉高溫厭氧微生物將PAN廢水中有機氮脫氨裂解,並將大分子有機碳化物初步降解成小分子有機酸類,由硝化槽將氨氮氧化成硝酸鹽,供給第二段無氧脫硝槽以高溫厭氧槽出流殘留有機碳做電子接受者,與硝化槽迴流水中硝酸鹽還原成氮氣,達成水中氮鹽去除之目的。
本研究接續2002年陳氏之研究,將好氧硝化流體化床從新啟動,初期以半批分次程序啟動,試圖增殖自營性硝化菌於反應槽中,結果顯示此期間氨氮均能完全轉化為硝酸鹽,硝化功能良好,但是在擔體粒狀活性碳(Granular activated carbon, GAC)上未能有效形成生物膜。再者於進流水中添加蔗糖,試圖以增殖有機碳氧化菌於GAC上,幫助硝化菌附著,結果仍未能有效促使生物膜生成。在三段式組合程序串聯操作時,好氧硝化槽之進流水質視前段處理效能而定,此期間分為兩試程,其一進流COD約為110 mg/L,氨氮為65 mg N/L,此期間COD約可去除25 %,氨氮之去除率受限於微生物量為50 %。另一試程進流COD約為290 mg/L,氨氮為30 mg N/L,此期間COD約可去除27 %,氨氮之去除率為96 %。可見好氧槽對有機物仍有處理效果,而氨氮之去除與負荷有關。以掃瞄式電子顯微鏡(Scanning electron microscope, SEM)作為菌相觀察可發現初期培養自營性硝化菌時,發現污泥不易附著GAC之特性,而添加蔗糖結果顯示有絲狀菌的形成,好氧反應槽啟動初期GAC上以桿菌為主,而三段式組合程序串聯操作後可發現桿菌及少許球菌,菌種趨向更多元化。
本研究中更進一步以分子生物方法探測好氧槽中菌群結構,以三段式程序組合操作時172天之懸浮污泥做16S rDNA基因選殖實驗,將71個不同菌落經DGGE篩選後可辨識出33個不同相對位置的條帶,將篩選到菌落出現比例較高者作定序分析,其中Nitrospira sp.佔16.9 %,為亞硝酸氧化菌之一屬;亦分析到Actinobacteria佔14.1 %,可能與絲狀菌形成相關;有三株屬於a-Proteobacteria,其中與Nitrobacter winogradskyi相似佔系統中5.6 %。
以專一性引子配合尾端修飾限制片段多型性 (Terminal restriction fragment length polymorphism, T-RFLP)分析各試程中硝化菌之分佈情形,發現在植種污泥及反應槽操作期間均可偵測到氨氧化菌及亞硝酸氧化菌的存在,在植種中存在的氨氧化菌以Nitrosospria為主,經氨氮馴養後轉變為以Nitrosomonas為主,而在整個反應槽操作期間均有Nitrobacter及Nitospria存在,由此可見生長環境影響菌群結構,以分子生物方式監測硝化菌比起傳統方式更能明確了解硝化菌特性,對未來控制程序條件提供了一些相關訊息。
This study evaluated performance and microbial ecology of nitrification in a three-satge fluidizaed bed bioprocess, thermophilic anaerobic/ anoxic denitrification/ aerobic nitrification, treating synthetic fiber manufacturing wastewater. The main component in the wastewater is polyacrylonitrile(PAN). The PAN wastewater contains not only organic pollutants but also high concentrtion of organic nitrogen(TKN/COD = 0.15~0.26) and sulfate(SO42- = 882~1762 mg/L), and lacked phosphorous source(TP/COD = 3.3´10-5). The industral wastewater was complex and inhibitive for biodegradation. Because nitrifying bacteria grow slowly and are easily inhibited, nitrification usually becomes a rate limiting step of nitrogen removal. This study used molecular biology techniques to investigate charaterestics of nitrifying bacteria in aerobic system treating industrial wastewater containing organic nitrogen.
In the three-stage process, thermophilic anaerobes degraded organic nitrogen to ammonia and converted longe-chain organic carbon to volatile acid. Ammonia oxidized to nitrate in the nitrification reactor. Nitrate and residual organic carbon from thermophilic anaerobic reactor provided denitrification reaction.
During the study, the aerobic nitrification was able to convert ammonia to nitrate efficiently, but biofilm formation on granular activated carbon(GAC) was ineffectively. Therefore, inducing organic carbon oxidizing bacteria adhered on GAC by adding sucrose in influent was employed to promote nitrifying bacteria biofilm formation. Results showed biofilm formation, howere wasn’t significant. In the three-stage process, the water guality of nitrification influent was determined by the first and second reactors. In one period, COD and ammonia concentration of nitrification influent were 110 mg/L and 65 mg N/L, and removal rate were 25 % and 50 %. In another period, COD and ammonia concentration of influent were 290 mg/L and 30 mg N/L, and removal rate were 27 % and 96 %. In conclusion, aerobic nitrification reactor was able to remove partial COD, but ammonia removal rate depedded ammonia loading.
According to the observation of scanning electron microscope(SEM), rod bacteria were dominant bacteria in the start-up period, and filamentous bacteria and cocci were observed at high organic volume loading.The cloning library was constructed for the sample taken at day 172 in three-strage process. Based on cloning-secguence analysis from 71 clones, Nitrospira sp., Nitrobacter winogradskyi, and Actinobacteria were 16.9 %, 5.6 %, and 14.1 %. In addition, the microbial diversity of ammonia oxidizing bacteria(AOB) and nitrite oxidizing bacteria(NOB) were monitored using terminal restriction fragment length polymorphism(T-RFLP). Nitrosomonas spp., Nitrobacter and Nitrospira sp. were dominant AOB and NOB in all operational periods.
Abeling U. and C. F. Seyfried (1992) Anaerobic-aerobic treatment of high-strengh ammonium wastewater-nitrogen removal via nitrite. Wat. Sci. Technol. 26: 1007-1015.
Aeckersberg F., F. A. Rainey and F. Widde (1998) Growth, natural relationships, cellular fatty acids and metabolic adaptation of sulfate-reducing bacteria that utilize long-chain alkanes under anoxic conditions. Arch. Microbiol. 170:361-369.
Akunna J. C., C. Bizeau and R. Moletta (1992) Denitrification in anaerobic digesters: possibilities and influence of wastewater COD/N-NOX ratio. Environ. Technol. 13, 825-836.
Akunna J. C., C. Bizeau and R. Moletta (1993) Nitrate and nitrite reductions with anaerobic sludge using various carbon sources: glucose, glycose, acetic acid, lactic acid and methanol. Wat. Res. 27, 1303-1312.
Alleman J. E. (1984) Elevated nitrite occurrence in biological wastewater treatment systems. Wat. Res. 27: 1303-1312.
Allison S. M. and J. I. Prosser (1993) Ammonia oxidation oxidation at low pH by attached population of nitrifying bacteria. Soil. Biol. Biochem. 25, 935-941.
Amann, R. I., J. Stromley, R. Devereux, R. Key and D. A. Stahl (1992) Molecular and microscopic identification of sulfate-reducing bacteria in multispecies biofilms. Appl. Environ. Microbiol. 58:614-623
Amann, R. I., J. Stromley, R. Devereux, R. Key and D. A. Stahl (1992) Molecular and microscopic identification of sulfate-reducing bacteria in multispecies biofilms. Appl. Environ. Microbiol. 58:614-623
Anderson I. C. and J. S. Levine (1986) Relative rates of nitric oxide production by nitrifiers, denitrifiers and nitrate resporers. Appl. Environ. Microbial. 51, 938-945.
Anderson I. C., M. Poth, J. Homstead and D. Burdige (1993) A comparison of NO and N2O production by autotrophic nitrifier Nitrosomonas europaea and the hetetrophic nitrifier Alcaligenes faecalis. Appl. Environ. Microbiol. 59, 3525-3533.
Anthonisen A. C., R. C. Loehr, T. B. S. Prakasam and E. G. Srinath (1976) Inhibition of nitrification by ammonia and nitrous acid. J. Wat. Pollut. Control Fed. 48, 835-852.
Asano Y., K., Fujishiro, Y. Tani and H. Yamada (1982) Aliphatic nitrile hydratase from Arthobacter sp. J-1 purification and characterization. Agric. Biol.Chem. 46:1165-1174.
ASCE (1992) Design of Municipal Wastewater Treatment Plant. VolΙ, WEF Manual of Practice No.8, American Society of Civil Engineering.
Babu G. R. V., J. H. Wolfram, J. M. Marian, K. D. Chapatwala (1995) Pseudomonas marginalis:its degradative capability on organic nitriles and amides. Applied Microbiology. 43(4):739-745.
Banerjee A., R. Sharma and U. C. Banerjee (2002) The nitrile-degrading enzymes: current status and future prospects. Appl Microbiol. Biotechnol. Rev. 60:33-44.
Beaubien A., Y. Hu, D. Bellahcen, V. Urbain and J. Chang (1995) Monitoring metabolic activity of denitrification process using gas production measurements. Wat. Res. 29, 2269-2274.
Beecari M., R. Passino, R. Ramadori and V. Tandoi (1983) Kinetic of dissimilatory nitrate and nitrite reduction in suspended growth culture. J. WPCF, 55, 58-64.
Belser L. W. (1979) Population ecology of nitrifying bacteria. Annu. Rev. Microbial. 33, 309-333.
Belser, L. W. (1979) Population ecology of nitrifying bacteria. Annu. Rev. Microbiol. 33: 309–333.
Biswas N. and R. G. Warnock (1985) Nitrogen transformations and fate of other parameters in columnar denitrification. Wat. Res. 19: 8: 1065-1071.
Bock E. and H. P. Koops (1992) The genus Nitrobacter and related genera. In the Procaryotes. 2nd. End, (Balows A., H. G. Trüper, M. Dworkin, W. Harder and K. H. Schleifer eds), 2302-2309, Springer – Verlag, Berlin.
Bock E., I. Schmidt, R. Stuven and D. Zart (1995) Nitrogen loss caused by denitrifying Nitrosomonas cells using ammonium or hydrogen as electron donors and nitrite as electron accetors. Arch Microbiol. 163, 16-20.
Bock, E., and H.-P. Koops. (1992) The genus Nitrobacter and related genera, p. 2302-2309. In A. Balows, H. G. Trüper, M. Dworkin, W. Harder, and K.-H. Schleifer (ed.), The prokaryotes, 2nd ed. Springer-Verlag, New York, N. Y.
Bode H., C. F. Seyfried and A. Kraft (1987) High-rate denitrification of concentrated nitrate wastewater. J. Wat. Sci. Technol. 19:163.
Bond, P. L., P. Hugenholtz, J. Keller, and L. L. Blackall. (1995) Bacterial community structure of phosphate-removing and non-phosphate-removing activated sludges from sequencing batch reactors. Appl. Environ. Microbiol. 61:1910–1916.
Bonin P. and M. Gilewicz (1991) A direct demonstration of “co-respiration” of oxygen and nitrogen oxides by Pseudomonas nautica: some spectral and kinetic properties of the respiratory components. FEMS Microbial. Lett. 80, 183-188.
Brezonik P. L. (1997) Denitrification in nature waters. Progress Water Technology. 8, 373-392.
Broda E. (1977) Two kinds of lithotrophs missing in nature. Z Allg Mikrobiol. 17, 491-493.
Bryant M. P., L. L. Campbell, C. A. Reddy and M. R. Crabill (1977) Growth of Desulfovibrio in lactate or ethanol media low in sulfate in association with H2-utilizing methanogenic bacteria. Appl. Environ. Microbiol. 33:1162-1169.
Carter J. P., Y. H. Hsiao, S. Spiro and D. J. Richardson (1995) Soil and sediment bacteria capable of aerobic nitrate respiration. Appl. Environ. Microbiol. 61, 2852-2858.
Castro H. F., N. H. Williams and A. Ogram (2000) Phylogeny of sulfate-reducing bacteria. FEMS Microbiol. Ecol.31:1-9.
Charles G. (1999) Denitrification of high-nitrate, high-salinity wastewater. Wat. Res. 33, 223-229.
Cheng Sheng-Shung, Yen-Nan Chen, Kun-Long Wu, Hui-ping Chuang, Shing-Der Chen (2004) “Study on a three-stage fluidized bed process treating acrylic synthetic-fiber manufacturing wastewater containing high-strength nitrogenous compounds” Water Science & Tech.
Christensen M. H. and P. Harremoes (1997) Biological denitrification of sewage: a literature review. Prog. Water Technol. 8, 509-555.
Copper G. S. and R. L. Smith (1983) Sequence of products formed during denitrification in some diverse western soils. Soil Sci. Soc. Amer. Proc. 27, 659-664.
de Boer W., A., Tietema, P. J. A. Klein Gunnewiek and H. J. Laanbroek (1992) The qutotrophic ammonium-oxidizing community in a nitrogen-saturated acid forest soil in relation to pH-dependent nitrifying activity. Soil Biol. Biochem. 24, 229-234.
de Boer W., H. Duyts and Laanbroek H. J. (1989) Urea stimulated autotrophic nitrification in suspension of fertilized, acid health soil. Soil Biol. Biochem. 21, 349-354.
Degrange, V., and R. Bardin. (1995) Detection and counting of Nitrobacter populations in soil by PCR. Appl. Environ. Microbiol. 61:2093–2098.
Delwiche C. C. (1970) The nitrogen cycle. Scientific American. 223, 137-149.
Domingues M. R., J. C. Araujo, M. B. Varesche and R. F. Vazoller (2002) Evaluation of thermophilic anaerobic microbial consortia using fluorescence in situ hybridization (FISH). Water Sci. Technol. 45:27-33.
Ehich S., D. D. Behrens, R. J. Seviour, R. Amann, and L. L. Blackall (1997) Development and use of fluorescent in situ hybridization probes for the detection and identification of “Microthrix parvicella” in activated sludge. Syst. Appl. Microbiol. 20, 310-318.
Ehrich, S., D. Behrens, E. Lebedeva, W. Ludwig, and E. Bock. (1995) A new obligately chemolithoautotrophic, nitrite-oxidizing bacterium, Nitrospira moscoviensis sp. nov., and its phylogenetic relationship. Arch. Microbiol. 164:16-23.
Erhart R., D. Bradford, R. J. Seviour, R. Amann and L. L. Blackall (1997) Development and use of fluorescent in situ hybridization probes for the detection and identification of “Microthrix parvicella” in activated sludge. Syst. Appl. Microbiol. 20, 310-318.
Etchebehere C., I. Errazquin, E. Barrandeguy, P. Dabert, R. Moletta and L. Muxi (2001) Evaluation of the denitrifying microbiota of anoxic reactors. FEMS Microbiol. Ecol. 35, 259-265.
Fang H. H. P., H. K. Chui and Y. Y. Li (1995) Effect of degradation kinetics on the microstructure of anaerobic biogranules. Water Sci. Technol. 32:165-172.
Fick M. (1997) Influence of c-sources on the denitrification rate of a high-nitrate rate concentrated industrial wastwater. Wat. Res. 31, 583-589.
Frushour B. G. (1995) Acrylic polymer characterization in solid state and solution. In J. C. Masson (ed.), Acrylic fiber technology and application. Mercel Dekker Inc. New York, N.Y. p. 207.
Geraats S. G. M., C. M. Hooijmans, E. W. van Niel, L. A. Robertson, J. J. Heijnen, K. C. A. M. Luyben, J. G. Kuenen (1990) The use of a metabolically structured model in the study of growth, nitrification and denitrification by Thiosphaera pantotropha. Biotech. Bioeng. 36, 921-930.
Ghyoot W., Vandaele S. and Verstraete W. (1999) Nitrogen removal from sludge reject water with a membrance-assisted bioreactor. Wat. Res. 33, 23-32.
Glass C. and J. Silverstein (1998) Denitrification kinetics of high nitrate concentration water: pH effect on inhibition and nitrite accumulation. Wat. Res. 32, 831-839.
Goreau T. J., W. A. Kaplan, S. C. Wofsy, M. B. McElroy M. B., F. W. Valois and S. W. Watson (1980) Production of NO and N2O by nitrifying bacteria at reduced concentrations of oxygen. Appl. Environ. Microbiol. 40, 526-532.
Graham D., R. Pereira, D. Barfield and D. Cowan (2000) Nitrile biotransformations using free and immobilized cells of a thermophilic Bacillus spp. Enzyme and Microbial Technology, 26(5-6):368-373.
Gregory L. G., P. L. Bond, D. J. Richardson and S. Spiro (2003) Characterization of a nitrate-respiring bacterial community using the nitrate reductase gene (narG) as a functional marker. Microbiol. 149:229-237.
Guerrero M. G., J. M. Vega and M. Losada (1980) The assimilatory nitrate-reducing system and its regulation. Annu. Rev. Plant. Pysiol. 32, 169-204.
Gujer W. and J. B. Zehnder (1983) Conversion processes in anaerobic digestion. Water Sci. Technol. 15:127-167.
Gumaelius L. (1996) Potential biomarker for denitrification of wastewater: effect of process variables and cadmium toxicity. Wat. Res. 30, 3025-3031.
Hanaki K., H. Zheng and T. Matsuo (1992) Production of nitrous oxide gas during denitrification of wastewater. Wat. Sci. Tech. 26, 1027-1036.
Hansen K. H., Ahring, B. K. and Raskin, L. (1999) Quantification of syntrophic fatty acid-beta-oxidizing bacteria in a mesophilic biogas reactor by oligonucleotide probe hybridization. Appl. Environ. Microbiol. 65: 4767-4774.
Hao X., J. J. Heijen and M. C. M. Losdrecht (2002) Sensitivity analysis of a biofilm model describing a one-stage complete autotrophic nitrogen removal (CANON) process. Biotechnol. Bioeng. 77, 266-277.
Harper D.B. (1977) Microbial metabolism of aromatic nitriles – enzymology of C-N cleavage by Nocardia sp. Biochem. J. 165:309-319.
Head I. M., W. D. Hiorns, T. M. Embley, A. J. McCarthy and J. R. Saunders (1993) The phylogeny of the autotrophic ammonia-oxidizing bacteria as determined by analysis of 16S ribosomal RNA gene sequence. J. Gen. Microbiol. 139, 1147-1153.
Head, I. M., W. D. Hiorns, T. M. Embley, A. J. McCarthy, and J. R. Saunders. (1993) The phylogeny of autotrophic ammonia-oxidizing bacteria as determined by analysis of 16S ribosomal gene sequence. J. Gen. Microbial. 139: 1147-1153.
Hellinga C., A. A. J. C. Schellen, J. W. Mulder, M. C. M. van Loosdrecht and J. J. Heijnen (1998) The SHARON process: An innovative method for nitrogen removal from ammonium-rich wastewater. Wat. Sci. Tech. 37, 183-187.
Henry E. A., R. Devereux, J. S. Maki, C. C. Gilmour, C. R. Woese, L. Mandelco, R. Schauder, C. C. Remsen and R. Mitchell (1994) Characterization of a new thermophilic sulfate-reduction bacterium Thermodesulfovibrio yellowstonii, gen. nov. and sp. nov.: its phylogenetic relationship to Thermodesulfobacterium commune and their origins deep within the bacterial domain. Arch. Microbiol. 161: 62-69.
Hiorns, W. D., R. C. Hastings, I. M. Head, A. J. McCarthy, J. R. Saunders, R. W. Pickup, and G. H. Hall. (1995) Amplification of 16S ribosomal RNA genes of autotrophic ammonia-oxidizing bacteria demonstrates the ubiquity of nitrosospiras in the environment. Microbiology 141:2793–2800.
Hong Z., K. Hanaki and T. Mastsuo (1994) Greenhouse gas-N2O production during denitrification in wastewater treatment. Wat. Res. Tech. 39, 13-21.
Hooijmans C. M., S. G. M. Geraats, E. W. J. van Niel, L. A. Roberston, J. J. Heijnen and K. C. A. Luyben (1990) Denitrification of growth and coupled nitrification/denitrification by immobilized Thiosphaera pantotropha using measurement and modeling of oxygen profiles. Biotech. Bioeng. 36, 931-939.
Hook R. H., W. G. Robinson (1964) Purification and properties. Ricinine nitrilase. Ⅱ.The Journal of Biological Chermistry. 239 (12):4263-4267.
Horz, H. P., Rotthauwe, J. H., Lukow, T., Liesack, Werner. (2000) Identification of major subgroups of ammonia-oxidizing bacteria in environmental samples by T-RFLP analysis of amoA PCR products. Journal of Microbiological Methods. 39: 197–204
Hovanec T. A. and E. F. Delong (1996) Comparative analysis of nitrifying bacteria associated with freshwater and marine aquaria. Appl. Environ. Microbiol. 62, 2888-2896.
Hovanec, T. A., and E. F. DeLong. (1996) Comparative analysis of nitrifying bacteria associated with freshwater and marine aquaria. Appl. Environ. Microbiol. 62: 2888–2896.
Hovanec, T. A., L. T. Taylor, A. Blakis, and E. F. Delong. (1998) Nitrospira-like bacteria associated with nitrite oxidation in freshwater aquaria. Appl. Environ. Microbiol. 64: 258–264.
Huang H. K. and S. K. Tseng (2001) Nitrate reduction by Citrobacter diversus under aerobic environment. Appl. Microbiol. Biotechnol. 55, 90-94.
Hyman M. R., I. B. Muton and D. J. Arp (1988) Interaction of ammonia monooxygenase from Nitrosomonas europaea with alkanes, alkenes and alkynes. Appl. Environ. Microbiol. 54, 3187-3190.
Ilies P. and D. S. Mavinic (2001) The effect of decreased ambient temperature on the biological nitrification and denitrification of a high ammonia landfill leachate. Wat. Res. 35, 2065-2072.
Isa Z., S. Grusenmeyer and W. Verstrate (1986) Sulfate reduction relative to methane production in high rate anaerobic digestion: Microbiological aspects. Appl. Environ. Microbiol. 51, 2065-2072.
Ishii K. and M. Fukui (2001) Optimization of annealing temperature to reduce bias caused by a primer mismatch in multitemplate PCR. Appl. Environ. Microbiol. 67:3753-3755.
Itokawa H., K. Hanaki and T. Matsuo (2001) Nitrous oxide production in high-loading biological nitrogen removal process under low COD/N ratio condition. Wat. Res. 35, 657-664.
Jaap R. (1998) Light-mediated nitrite accumulation during denitrification by Pseudomonas sp. Strain JR12. Appl. Environ. Microbiol. 64.
Jacob S. H. and K. A. Birgitte (1999) Thermodesulfobacterium hveragerdense sp. nov., and Thermodesulfovibrio islandicus sp. nov., two thermophilic sulfate reducing bacteria isolated from a Icelandic hot spring. System. Appl. Microbiol. 22: 559-564.
Jeill O. H. (1999) Oxygen inhibition of activated sludge denitrification. Wat. Res. 33, 1925-1937.
Jetten M. S. M., S. Horn and M. C. M. van Loosdrecht (1997) Towards a more sustainable municipal wastewater treatment system. Wat. Sci. Tech. 35, 171-180.
Jetten M. S., A. J. Stams and A. J. B. Zehnder (1992) Methanogenesis from acetate: a comparison of the acetate metabolism in Methanothrix soehngeni and Methanosarcina spp. FEMS Microbiol. Rev. 88, 181-198.
Jones R. D. and R. Y. Morita R. Y. (1983) Methane oxidation by Nitrosococcus oceanus and Nitrosomonas europaea. Appl. Environ. Microbiol. 45, 401-410.
Jurestschko S., G. Timmermann, M. Schmid, K. -H. Schleifer, A. Pommerening-Röser, H. -P. Koop and M. Wagner (1998) Combined molecular and conventional analyses of nitrifying bacterium diversity in activated sludge: Nitrosococcus mobilis and Nitrosopira-like bacteria as dominant populations. Appl. Environ. Microbiol. 64, 3024-3051.
Juretschko S., A. Loy, A. Lehner and M. Wagner (2002) The microbial community composition of a nitrifying-denitrifying activated sludge from an industrial sewage treatment plant analyzed by the full-cycle rRNA approach. Syst. Appl. Microbiol. 25:84-99.
Kampfer P, Witzenberger R, Denner EB, Busse HJ, Neef A. (2002) Novosphingobium hassiacum sp. nov., a new species isolated from an aerated sewage pond. Syst Appl Microbiol. 25(1): 37-45.
Keen GA, JI. Prosser. (1987) Steady state and transient growth of autotrophic nitrifying bacteria. Arch. Microbiol. 147: 73–79.
Klein M., M. Friedrich, A. J. Roger, P. Hugenholtz, S. Fishbain, H. Abicht, L. L. Blackall, D. A. Stahl and M. Wagner (2001) Multiple Lateral Transfers of Dissimilatory Sulfite Reductase Genes between Major Lineages of Sulfate-Reducing Prokaryotes. J. Bacteriol. 183: 6028-6035.
Klemedtsson L., Q. Jiang, A. K. Klemedtson and L. Bakken (1999) Autotrophic ammonium-oxidizing bacteria in a Swedish mor humus. Soil. Biol. Biochem. 31 839-847.
Knowles G., A. L. Downing and M. J. Barrett (1965) Determination of kinetic constants for nitrifying bacteria in mixed culture with the aid of an electronic computer. J. Gen. Microbiol. 38: 263.
Kobayashi M., N. Yanaka, T. Nagasawa, H. Yamada (1990) Purification and characterization of a novel nitrilase of Rhodococcus rhodochrous K22 that acts on aliphatic nitriles. Journal of Bacteriology. 172(9):4807-4815.
Koops H. -P. and A. Pommerening-Röser (2001) Distribution and ecophysiology of the nitrifying bacteria emphasizing cultured species. FEMS Microbiol. Ecol. 37, 1-9.
Koops H. -P., B. Böttcher, U. C. Möller, A. Pommerening-Röser and G. Stehr (1990) Description of a new species of Nitrosococcus. Arch. Microbial. 154, 244-248.
Kornaros M., C. Zafiri and G. Lyberatos (1996) Kinetics of denitrification by Pseudomonas denitrificans under growth conditions limited by carbon and/or nitrate or nitrite. Wat. Environ. Res. 68, 934-945.
Kowalchuk G. A., J. R. Stephen, W. de Boer, J. I. Prosser, T. M. Embley and J. W. Woldendorp (1997) Analysis of ammonia-oxidizing bacteria of the beta subdivision of the class Proteobacteria in coastal sand dunes by denaturing gradient gel electrophoresis and sequencing of PCR-amplified 16S ribosomal DNA fragments. Appl. Environ. Microbiol. 63:1489-1497.
Kowalchuk, G. A., J. R. Stephen, W. de Boer, J. I. Prosser, T. M. Embley, and J. W. Woldendorp. (1997) Analysis of ammonia-oxidizing bacteria of the b subdivision of the class Proteobacteria in coastal sand dunes by denaturing gradient gel electrophoresis and sequencing of PCR-amplified 16S ribosomal DNA fragments. Appl. Environ. Microbiol. 63: 1489–1497.
Lang E. and Jagnow G. (1986) Fungi of a forest soil nitrifying at low pH values. FEMS Microbial. Ecol. 38, 257-265.
Lapara T. M., C. H. Nakatsu, L. Pantea and J. E. Alleman (2000) Phylogenetic analysis of bacterial communities in mesophilic and thermophilic bioreactors treating pharmaceutical wastewater. Appl. Environ. Microbiol. 66:3951-3959.
Lee Y. W., J. J. Ribinson and C. M. Cavanaugh (1999) Pathway of inorganic nitrogen assimilation in chemoautotrophic bacteria-marine invertebrate symbioses:expression of host ans symbiont glutamine synthetase. Journal of Experimental Biology. 202, 289-300.
Lee Y. W., S. K. Ong and C. Sato (1997) Effects of heavy metals on nitrifying bacteria. Wat. Sci. Tech. 36, 69-74.
Linton E. A., C. J. Knowles (1986) Utilization of aliphatic amides and nitriles by Nocardia rhodochrous LL100-21. The Journal of General Microbology. 132:1493-1501.
Liu J. K., Liu, C. H. and Lin, C. S. (1997) The role of nitrogenase in a cyanide-degrading Klebsiella oxytoca strain. Proc. Natl. Sci. Counc. Repub. China 2:37-42.
Liu W. T., O. C Chan and H. H. Fang (2002) Microbial community dynamics during start-up of acidogenic anaerobic reactors. Water Res. 36:3203-3210.
Loy A., A. Lehner, N. Lee, J. Adamczyk, H. Meier, J. Ernst, K. H. Schleifer, and M. Wagner (2002) Oligonucleotide Microarray for 16S rRNA Gene-Based Detection of All Recognized Lineages of Sulfate-Reducing Prokaryotes in the Environment. Appl. Environ. Microbiol. 68:5064-5081.
Lozinov A. B. and V. A. Ermachenko (1959) NH4+ oxidation by nitrite bacteria as function of certain factors of the medium. The effect of (NH4)2SO4 concentration. Microbiology. 28, 674-679.
Madigan M. T., J. M. Martinko and J. Parker (2000) Biology of microorganisms. 9th Edition. Prentice-Hall, Inc. New Jersey, U. S. A. p. 609, 687.
Madigan, M. T., Martinko, J. M, Parker, J. (2003) Brock Biology of Microorganisms. Prentice Hall. Upper Saddle River. Tenth Edition. 416-417
Maidak B. L., Cole, J. R., Lilburn, T. G., Parker, C. T. Jr., Saxman, P. R., Stredwick, J. M., Garrity, G. M., Li, B., Olsen, G. J., Pramanik, S., Schmidt, T. M. and Tiedje, J. M. (2000) The RDP (Ribosomal Database Project) continues. Nucleic Acids Res. 28:173-174.
Mark H. F., S. M. Atlas and E. Cernia (1967) Man-Made Fibers. Volume 1. Interscience Pub. New York.
Matson J. V. and W. G. Characklis (1976) Diffusion into microbial aggregates. Wat. Res. 10, 877-885.
McBride K. E., J. W. Kenny, D. M. Stalker (1986) Metabolism of the herbicide bromoxynil by Klebsiella pneumoniae subsp. Ozaenae. Applied and Environmental Microbiology. 52(2):325-330.
McCaig, A. E., T. M. Embley, and J. I. Prosser. (1994) Molecular analysis of enrichment cultures of marine ammonia oxidisers. FEMS Microbiol. Lett. 120: 363–368.
McCartney D. M. and J. A. Oleszkiewicz (1993) Competition between methanogens and sulfate reducers: effect of COD:sulfate ratio and acclimation. Wat. Environ. Res. 65, 655-664.
McCarty G. W. and J. M. Bremner (1992) Regulation of assimilatory nitrate reductase activity in soil by microbial assimilation of ammonia. Proc. Natl. Acad. Sci. 89, 453-456.
Mills, D. K., Fitzgerald, K., Litchfield, C. D., Gillevet, Patrick M. (2003) A comparison of DNA profiling techniques for monitoring nutrient impact on microbial community composition during bioremediation of petroleum-contaminated soils. Journal Of Microbiological Methods. 54: 57-74
Mobarry, B. K., M. Wagner, V. Urbain, B. E. Rittmann, and D. A. Stahl. (1996) Phylogenetic probes for analyzing abundance and spatial organization of nitrifying bacteria. Appl. Environ. Microbiol. 62: 2156–2162.
Mobary B. K., M. Wanger, V. Urban, B. E. Rittmann and D. A. Stahl (1996) Phylogenetic probes for analyzing abundance and spatial organization of nitrifying bacteria. Appl. Environ. 62, 2156-2162.
Mulder A., A. A. van de Graaf, L. A. Robertson and J. G. and J. G. Kuenen (1995) Anaerobic ammonium oxidation discovered in a denitrifying fluidized bed reactor. FEMS Microbiol. 16, 177-183.
Munch E. V., P. Lant and J. Keller (1996) Simultaneous nitrification and denitrification in bench-scale sequencing batch reactors. Wat. Res. 30, 277-284.
Muyzer G. and K. Smalla (1998) Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) in microbial ecology. Antonie van Leeuwenkoek 73:127-141.
Muyzer G. and N. B. Ramsing (1995) Molecular methods to study the organization of microbial communities. Water Sci. Technol. 32:1-9.
Muyzer G., E. C. de Waal and A. G. Uitterlinden (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl. Environ. Microbiol. 59:695-700.
Myers R. M., T. Maniatis and L. S. Lerman (1987) Detection and localization of single base change by denaturing gradient gel electrophoresis. Methods Enzymol. 155:501-527.
Nakajima M., T. Hayamizu and H. Nishimura (1984) Inhibitory effect of oxygen on denitrification and denitrification in sludge form an oxidation ditch. Wat. Res. 18, 339-343.
Nawaz M. S., J. W. Davis, J. H. Wolfram, K. D. Chapatwala (1991a) Degradation of organic cyanides by Pseudomonas aeruginosa. Applied Biochemistry and Biotechnology. 28/29:865-875.
Nawaz M. S., K. D. Chapatwala, J. H. Wolfram (1989) Degradation of acetonitrile by Pseudomonas putida. Applied and Environmental Microbiology. 55(9):2267-2274.
Nawaz M. S., W. Franklin, W. L. Campbell, T. M. Heinze, C. E. Cerniglia (1991b) Metabolism of acrylonitrile by Klebsiella pneumoniae. Archives of Microbiology. 156:231-238.
Nielsen P. H. (1987) Biofilm dynamics and kinetics during high-rate sulfate reduction under anaerobic conditions. Appl. Environ. Microbiol. 53:27–32.
Nilsen R. K., T. Torsvik and T. Lien (1996) Desulfotomaculum thermocisternum sp. Nov., a sulfate reducer isolated from a hot North Sea oil reservoir. Int. J. Syst. Bacteriol. 46:397-402.
Nübel U., B. Engelen, A. Felske, J. Snaidr and A. Wieshuber (1996) Sequence heterogeneities of genes encoding 16S rRNAs in Paenibacillus polymyxa detected by temperature gradient gel electrophoresis. J. Bacteriol. 178:5636-5643.
Odom J. M. and Singleton, R. Jr. (1993) The sulfate-reducing bacteria: contemporary perspectives. Springer-Verlag New York Inc. p.28.
OH J. and J. Silverstein (1996) Oxygen inhibition of activated sludge denitrification. Wat. Res. 33, 1925-1937.
Olsen G. J., D. J. Lane, S J. Giovannoni and N. P. Pace (1986) Microbial ecology and evolution: a ribosomal RNA approach. Ann. Rev. Microbiol. 40:337-365.
Painter H. A. and J. E. Loveless (1983) Effect of temperature and pH value on the growth-rate constants of nitrifying bacteria in the activated-sludge process. Wat. Res. 17, 237-248.
Painter HA. (1970) A review of literature on inorganic nitrogen metabolism in microorganisms. Water Res. 4:393–450.
Park H. D., J. M. Regan and D. R. Noguera (2002) Molecular analysis of ammonia-oxidizing bacterial populations in aerated-anoxic orbal processes. Water Sci. Technol. 46:273-280.
Park, H., Regan, J. M., Noguera, D. R. (2002)Molecular analysis of ammonia-oxidizing bacterial populations in aerated-anoxic orbal processes. Water Science And Technology 46: 273-280
Parker D. S. (1986) Nitrification in trickling filters. J. WPCF. 58, 9: 869-902.
Patureau D., J. Davison, N. Bernet and R. Moletta (1994) Denitrification under various aeration conditions in Comamonas sp., strain Sgly2. FEMS Microbiol. Ecol. 14, 71-78.
Payne W. J. (1981) Denitrification, Chap. 2~3, John Wiley & Sons, New York.
Pennington P. L. and R. C. Ellis (1993) Autotrophic and heterophic nitrification in acidic forest and native grassland soils. Soil Biol. Biochem. 25, 1399-1408.
Pommerening-Röser A., G. Rath and H. P. Koops (1996) Phylodenetic diversity within the genus Nitrosomonas. Syst. Appl. Microbiol. 19, 344-351.
Poth M. and D. D. Focht (1985) N-15 kinetic analysis of N2O production by Nitrosomonas europaea-an examination of nitrifire denitrification. Appl. Environ. Microbiol. 49, 1134-1141.
Precigou S., Goulas, P. and Duran, R. (2001) Rapid and specific identification of nitrile hydratase (NHase)-encoding genes in soil samples by polymerase chain reaction. FEMS Microbiol. Lett. 204: 155-161.
Quevedo M., E. Guynot and L. Muxi (1996) Denitrifying potential of methanogenic sludge. Biotechnol Lett. 18, 1363-1368.
Rabus R., Nordhaus, R., Ludwig, W. and Widdel, F. (1993) Complete oxidation of toluene under strictly anoxic conditions by a new sulfate-reducing bacterium. Appl. Environ. Microbiol. 59:1444-1451.
Ramsing N. B., H. Fossing, T. G. Ferdelman, F. Andersen and B. Thamdrup (1996) Distribution of bacterial populations in a stratified fjord (Mariager fjord, Denmark) quantified by in situ hybridization and related to chemical gradients in the water column. Appl. Environ. Microbiol. 62:1391-1404.
Randall C. W. (1984) Nitrite built-up in activated sludge resulting from temperature effects J. WPCF. 56, 1039-1044.
Raskin L., B. Rittmann and D.A. Stahl (1996) Competition and Coexistence of Sulfate-Reducing and Methanogenic Populations in Anaerobic Biofilms. Appl. Environ. Microbiol. 62:3847-3857.
Raskin L., J. M. Stomley, B. E. Rittmann and D. A. Stahl (1994) Group-specific 16S rRNA hybridization probes to describe natural communities of methanogens. Appl. Environ. Microbiol. 60:1232-1240.
Regana, J. M., G. W. Harringtonb, H. Baribeauc, R. deLeond, D. R. Noguera. (2003) Diversity of nitrifying bacteria in full-scale chloraminated distribution systems. Water Resh. 37: 197-205.
Regana, J. M., G. W. Harringtonb,and D. R. Noguera. (2003) Ammonia- and nitrate-oxidizing bacterial communities in a pilot-scale chloraminated drinking water distribution system. Appl. Environ. Microbiol. 68: 73-81.
Regana, J. M. (2001) Microbial ecology of nitrification in chloraminated drinking water distribution system. P.H.D Thesis, University of Wiscosin, Madison.
Rick W. Y. and M. T. Stuart (2001) Microbial nitrogen cycles:physiology, genomics and applications. Current Opinion Microbiology. 4, 307-312.
Riesner D., G. Steger, R. Zimmat, R. A. Owens, M. Wagenhofer, W. Hillen, S. Vollbach and K. Henco (1989) Temperature-gradient gel electrophoresis of nucleic acids: analysis of conformational transitions, sequence variations, and protein-nucleic acid interactions. Electrophoresis. 10, 377-389.
Rijn J. V., Y. Tal and Y. Barak (1996) Influence of volatile fatty acids on nitrite accumulation by a Pseudomonas stutzri strain isolated from a denitrifying fluidized bed reactor. Appl. Environ. Microbiol. 62, 2615-2620.
Robertson L. A., E. W. van Niel, R. A. M. Torremans and J. G. Kuenen (1988) Simultaneous nitrification and denitrification in aerobic chemostat cultures of Thiosphaera pantotropha. Appl. Enviton. Microbiol. 54, 2812-2818.
Robertson L. A., T. Dalsgard, N. P. Revsbech and J. G. Kuenen (1995) confirmation of aerobic denitrification in batch cultures, using gas chromatography and 15N mass spectrometry. FEMS Microbiol Ecol. 18, 113-120.
Robinson J. A. and J. M. Tiedje (1984) Competition between sulfate-reducing and methanogenic bacteria for H2 under resting and growing conditions. Arch. Microbiol. 137:26-32.
Rosselló-Mora R. A., M. Wanger, R. Amann and K. –H. Schleifer (1995) The aboundance of Zoogloea ramigera in sewage treatment plants. Appl. Environ. Microbiol. 61, 702-707.
Schmidt I. and E. Bock (1997) Anaerobic ammonia oxidation with nitrogen dioxide by Nitrosomonas eutropha. Arch. Microbiol. 167, 106-111.
Scholten J. C. M. and A. J. M. Stams (1995) The effect of sulfate and nitrate on methane formation in a freshwater sediment. Antonie van Leeu. 68, 309-315.
Schramm A, D. deBeer, Heuvel JCvd, S. Ottengraf, R. Amann. (1999) Microscale distribution of populations and activities of Nitrosospira and Nitrospira spp. Along a macroscale gradient in a nitrifying bioreactor: quanti.cation by in situ hybridization and the use of microsensors. Appl. Environ. Microbiol. 65: 3690–3696.
Schramm, A., D. deBeer, M. Wagner, and R. Anann. (1998) Identification and activities in situ of Nitrosospira and Nitrospira spp. as dominant populations in a nitrifying fluidized bed reactor. Appl. Environ. Microbiol. 64: 3480–3485.
Schramm, A., L. H. Larsen, N. P. Revsbech, N. B. Ramsing, R. Amann, and K.-H. Schleifer. (1996) Structure and function of a nitrifying biofilm as determined by in situ hybridization and the use of microelectrodes. Appl. Environ. Microbiol. 62: 4641–4647.
Schramn A., D. de Beer, M. Wanger and R. Amann (1998) Identification and activities in situ of Nitrosospira and Nitrospira spp. As dominant populations in a nitrifying fluidized bed reactor. Appl. Environ. Microbiol. 64, 3480-3485.
Schulthless R. V., D. Wild and W. Gujer (1994) Nitric and nitrous oxide from denitrifying activated sludge at low oxygen concentration. Wat. Sci. Tech. 30, 123-132.
Sekiguchi Y., Y. Kamagata, K. Nakamura, A. Ohashi and H. Harada (1999) Fluorescent in situ hybridization using 16S rRNA-targeted oligonucleotides reveals localization of methanogens and selected uncultured bacteria in mesophilic and thermophilic sludge granules. Appl. Environ. Microbiol. 65:1280-1288.
Sekiguchi Y., Y. Kamagata, K. Syutsubo, A. Ohashi, H. Harada, and K. Nakamura (1998) Phylogenetic diversity of mesophilic and thermophilic granular sludges determined by 16S rRNA gene analysis. Microbiol. 144: 2655-2665.
Sharma B. and R. C. Ahlert (1977) Nitrification and nitrogen removal. Wat. Res. 11, 897-925.
Sheng-Shung Cheng, Kun-Long Wu, I-Cheng Tseng, Jer-Horng Wu(2002)「MICROBIAL DIVERSITY OF THERMOPHILC ANAEROBIC CONSORTIA DEGRADING NITROGENOUS COMPOUNDS IN POLYACRYLONITRILE (PAN) WASTEWATER RICH WITH SULFATE」, 第二十七屆廢水處理技術研討會論文集, w-a-o30。
Siegrist H., S. Reithaar, G. Koch and P. Lais (1998) Nitrogen loss in a nitrifying rotating contactor treating ammonium-rich wastewater without organic carbon. Wat. Sci. Tech. 38, 241-248.
Smith P. G. and P. Coackley (1984) Diffusity, tortuosity and pore structure of activated sludge. Wat. Res. 18, 117-122.
Snaidr J., Amann, R., Huber, I., Ludwig, W. and Schleifer, K. (1997) Phylogenetic analysis and in situ identification of bacteria in activated sludge. Appl. Environ. Microbiol. 63:2884-2896.
Sorokin D. Y., G. Muyzer, T. Brinkhoff, G. Kuenen and M. S. M. Jetten (1998) Isolation and characterization of a novel facultatively alkaliphilic Nitrobacter species, N. alkalicus sp. nov. Arch. Microbial. 170, 345.
Stahl D. A. and R. Amann (1991) Development and application of nucleic acid probes. In Nucleic acid techniques in bacterial systematics. Stackebrandt, E. and Goodfellow, M. (eds.), New York: John Wiley and Sons. 205-248.
Stams A. J. M., E. M. Flameling and E. C. L. Marnette (1990) The importantance of autotrophic versus heterotrophic oxidation of atmospheric ammonium in forest ecosystems with acid soil. FEMS Microbial. Ecol. 74, 337-344.
Stams A. J. M., T. A. Hansen and G. W. Skyring (1985) Utilization of amino acids as energy substrates by two marine Desulfovibrio strains. FEMS Microbiol. Ecol. 31:11-15.
Stanley R. and W. K. Sandler (1992) Polymer syntheses. Academic Press New York Vol. 1:382-408.
Stehr G., B. Böttcher, P. Dittberner, G. Rath, H-P. Koops. (1995) The ammonia-oxidizing nitrifying population of the river Elbe estuary. FEMS Microbiol. Ecol. 17: 177–86.
Stenstrom M. K. et. al. (1979) The effect of dissolved oxygen concentration on nitrification. Wat. Res. 14: 643-649.
Stephen, J. R., A. E. McCaig, Z. Smith, J. I. Prosser, and T. M. Embley. (1996) Molecular diversity of soil and marine 16S rRNA gene sequences related to b-subgroup ammonia-oxidizing bacteria. Appl. Environ. Microbiol. 62: 4147–4154.
Stewart V. (1994) Regulation of nitrate and nitrite reductase synthesis in Enterobacteria. Ant. Van Leeu. 66, 37-45.
Stoutharmer A. H. (1988) Dissimilatory reduction of oxidized nitrogen compounds. In Biology of Anaerobic Microorganisms. Ed. Zehnder A. J. B. John Wiely and Sons. New York, NY.
Struos M., J. A. Fuerst, E. H. Kramer, S. Logemann, G. Muyzer, K. T. van de Pas-Schoonen, R. Webb, J. G. Kuene and M. S. Jetten(1999) Missing lithotroph identified as new planctomycete. Nature. 400, 446-449.
Suwa Y., Y. Imanura, T. Suzuki, T. Tashiro and Y. Urushigawa (1994) Ammonium-oxidizing bacteria with different sensitivies to (NH4)2SO4 in activated sludge. Wat. Res. 28, 1523-1532.
Suzuki I., U. Dular and S. C. Kwok (1974) Ammonia and ammonium ion as substrate for oxidation by Nitrosomonas cells and extracts. J. Bacteriol. 176, 6623-6630.
Suzuki M. T. and S. J. Giovannoni (1996) Bias caused by template annealing in the amplification of mixture of 16S rRNA genes by PCR. Appl. Environ. Microbiol. 62:625-630.
Tanaka H., S. Uzman and I. J. Dunn (1981) Kinetics of nitrification using a fluidized sand bed reactor with attached growth. Biotech. and Bioeng. 24: 660.
Terry K. R. and A. B. Hooper (1981) Hydroxylamine oxidoreductase:a 20-heme, 200,000 molecular weight cytochrome c with unusual denaturation properties which forms a 63,000 molecular weight monomer after heme removal. Biochemistry. 20, 7026-7032.
Teske A., C. Wawer, G. Muyzer and N. B. Ramsing (1996) Distribution of sulfate-reducing bacteria in a stratified fjord (Mariager Fjord, Denmark) as evaluated by most-probable-number counts and denaturing gradient gel electrophoresis of PCR-amplified ribosomal DNA fragments. Appl. Environ. Microbiol. 62:1405-1415.
Teske, A., E. Alm, J. M. Regan, S. Toze, B. E. Rittman, and D. A. Stahl. (1994) Evolutionary relationships among ammonia- and nitrite-oxidizing bacteria. J. Bacteriol. 176: 6623-6630.
Tiedje J. M. (1988) Ecology of denitrification and dissimlatory nitrate reduction to ammonium. In Biology of Anaerobic Microorganisms. Edited by Zehnder A. J. B., 179-244, Wiely. New York.
Timmermans P. and A. van Haute (1983) Denitrification with methanol: fundamental study of the growth and denitrification capacity of Hyphomicrobium sp. Wat. Res. 17, 1249-1255.
Traore A. S., M. L. Fardeau, C. E. Hatchikian, J. L. Gall and J. P. Belaich (1983) Energeties of growth of a defined mixed culture of Desulfovibrio vulgaris and Methanosarcina barkeri: interspecies hydrogen transfer in batch and continuous cultures. Appl. Environ. Microbiol. 46:1152-1156.
Turk O. and D. S. Mavinic (1989) Maintaining nitrite build-up in a system acclimated to free ammonia. Wat. Res. 23, 1383-1388 Nitrite:a key compound in N loss processes under acid conditions? Plant and soil. 76, 233-241.
vam Cleemput O. and L. Baert (1984) Nitrite: a key compound in N loss processes under acid condition? Plant and Soil. 76, 233-241.
van de Graaf A. A., P. de Bruijn, L. A. Robertson, M. S. M. Jetten and J. G. Kuenen (1996) Autotrophic growth of anaerobic ammonium is a biologically mediated process. Appl. Environ. Microbiol. 61, 1246-1251.
van der Hoek J. P., P. J. M. Latour and A. Klapwijk (1988) Effect of hydraulic residence time on microbial sulfide production in an upflow sludge blanket dinitrification reactor fed with methonal. Appl. Microbiol. 61, 1246-1251.
Villaverde S., P. Garcia and F. Fdz-Polanco (1997) Influence of pH over nitrifying biofilm activity in submerged biofilters. Wat. Res. 31, 1180-1186.
Visser A., P. A. Alphenaar, Y. Gao, G. van Rossem and G. Lettinga (1993a) Granulation and immobilization of methanogenic and sulfate reducing bacteria in high rate anaerobic reactor. Appl. Microbiol. Biotech. 40, 549-556.
Visser A., Y. Gao and G. Lettinga (1992) Anaerobic treatment of synthetic sulfate-containing wastewater under thermophilic conditions. Wat. Sci. Tech. 25, 193-202.
Visser A., Y. Gao and G. Lettinga (1993b) Effects of short-term temperature increases on the mesophilic anaerobic breakdown of sulfate containing synthetic wastewater. Wat. Res. 27, 541-550.
Voytek, M. A., and B. B. Ward. (1995) Detection of ammonia-oxidizing bacteria of the beta-subclass of the class Proteobacteria in aquatic samples with the PCR. Appl. Environ. Microbiol. 61: 1444–1450.
Wagner M., R. Amann, P. Kämpfer, B. Assmus, A. Hartmann, P. Hutzler, N. Springer and K. –H. Schliefer (1994) Identification and in situ detection of Gram-negative filamentous bacteria in activated sludge. Syst. Appl. Microbiol. 17, 405-417.
Wagner M., Roger, A. J., Flax, J. L., Brusseau, G. A., and Stahl, D. A. (1998) Phylogeny of dissimilatory sulfite reductases supports an early origin of sulfate respiration. J. Bacteriol. 180:2975-2982.
Wagner, M., G. Rath, H.-P. Koops, J. Flood, and R. Amann. (1996) In situ analysis of nitrifying bacteria in sewage treatment plants. Water Sci. Technol. 34: 237–244.
Wagner, M., G. Rath, R. Amann, H.-P. Koops, and K.-H. Schleifer. (1995) In situ identification of ammonia-oxidizing bacteria. Syst. Appl. Microbiol. 18: 251–264.
Wang C. C. and C. M. Lee (2001) Denitrification with acrylonitrile as a substrate using pure bacteria cultures isolated from acrylonitrile-butadiene-styrene wastewater. Environ. Int. 26:237-241.
Wanger M., G. Path, R. Amann, H. -P. Schleifer (1995) In situ identification of ammonia-oxidizing bacteria. Syst. Appl. Microbiol. 18, 251-264.
Ward, B. B., M. A. Voytek, and K.-P. Witzel. (1997) Phylogenetic diversity of natural populations of ammonia oxidizers investigated by specific PCR amplification. Microb. Ecol. 33: 87–96.
Watson S. W. and J. B. Waterbury (1971) Characteristic of two marine nitrite-oxidizing bacteria Nitrosopina gracilis nov. gen. Nov. sp. and Nitrococcus mobilis nov. gov. nov. sp. Arch. Microbiol. 77, 203-230.
Watson S. W., E. Bock, H. Harms, H. P. Koops and A. B. Hooper (1989) Nitrifying bacteria. In Bergey’s manual of systematic bacteriology. (edn) Staley J. T., M. P. Bryant, N. Pfennig, and J. G. Holt, 3. 1808-1834. The Williams and Wilkins Co., Baltmore, Md.
Watts, J. E., Wu, Q., Schreier, S. B., May, H. D., Sowers, K. R. (2001) Comparative analysis of polychlorinated biphenyl-dechlorinating communities in enrichment cultures using three different molecular screening techniques. Environmental Microbiology,3: 710-719
Wen-Chin Chen, Sheng-Shung Cheng and Jin-Chuang Chiu (1999) ”Characteristics of Biological Activated Carbon Fluidized Beds for the Treatment of ABS Resin Manufacturing Wastewater” 7th IAWQ Asia-Pacific Regional Conference Proceeding , pp. 1211-1216.
Widdel F. (1988) Microbiology, and ecology of sulfate- and sulfur-reducing bacteria. In: Biology of anaerobic microorganisms. Zehnder A. J. B. (ed.) New York: John Wiley and Sons.
Wilderer, P. A., H. J. Bungartz, H. Lemmer, M. Wagner and J. Keller (2002) Modern scientific methods and their potential in wastewater science and technology. Water Res. 36:370-393.
Wilson T. E. and D. Newton (1973) Brewery waste as a carbon sourse for denitrification. 28th Annual prudue industrial waste conference, 234-241.
Woese C. R. (1987) Bacteria evolution. Microbiol. Rev. 51, 221-271.
Woese C. R., O. Kandler and M. L. Wheelis (1990) Towards a natural system of organisms: proposal for the domains archaea, bacteria, and eucarya. Proc. Natl. Acad. Sci. USA, 87, 4576-4579.
Wood P. M. (1986) Nitrification as a bacterial energy source. In Nitrification. 39-62. edited by J. I. Prosser. Washington, DC:IRL press.
Wrage N., G. L. Velthof, M. L. van Beusichem and O. Oenema (2001) Role of nitrifier denitrification in the production of nitrous oxide. Soil Bio Biochem. 33, 1723-1732.
Wu J. H., W. T. Liu, I. C. Tseng and S. S. Cheng (2001) Characterization of microbial consortia in a terephthalate-degrading anaerobic granular sludge system. Microbiol. 147:373-382.
Yamada H., Y. Asano, T. Hino, Y. Tani (1979) Microbial unilization of acrylonitrile. Journal of Fermentation Technology. 57(1):8-14.
Yanase H., T. Sakai, K. Tonomura (1985) Microdial metabolism of nitriles in Pseudomonas sp. Journal of Fermentation Technology. 63(2):193-198.
Ye R. W., B. A. Averill and J. M. Tiedje (1994) Denitrification:production and comsumption of nitric oxide. Appl. Environ. Microbial. 60, 1053-1058.
Yoda M., M. Kitagawa and Y. Miyaji (1987) Long term competition between sulfate-reducing and methane-producing bacteria for acetate in anaerobic biofilm. Water Res. 21:1547–1556.
Yoshioka T, H. Terai, Y. Saijo. (1982) Growth kinetic studies of nitrifying bacteria by the immuno.uorescent counting method. J. Gen. Appl. Microbiol. 28: 169–180.
You, S. J., C. L. Hsu, S. H. Chuang, C. F. Ouyang. (2003) Nitrification efficiency and nitrifying bacteria abundance in combined AS-RBC and A2O system. Water Resh. 37: 2281-2290.
Young, J. C. (1999) On-line respirometers for treatment plant monitoring and control. ERL of ITRI.
Zart D. and E. Bock (1998) High rate of aerobic nitrification and denitrification by Nitrosomonas eutropha grown in a fermentor with complete biomass retention in the presence of gaseous NO2 or NO. Arch. Microbiol. 169, 282-286.
Zeikus J. G., M. A. Dawson, T. E. Thompson, K. Ingvorsen and E. C. Hatchikian (1983) Microbial ecology of volcanic sulphidogenesis : isolation and characterization of Thermodesulfobacterium commune, gen. nov. and sp. Nov., J. Gen Microbiol. 129: 1159-1169.
Zumft W. G. (1997) Cell biology and molecular basis of denitrification. Microbiol. Mol. Biol. Rev. 61, 633-616.
陳賢焜,鄭幸雄,(1994),「生物膜化脫硝程序處理高濃度氨氮廢水之研究」,國立成功大學環境工程研究所博士論文。
陳文欽,鄭幸雄,(1997),「固定生物流體化床處理高氮樹脂廢水之特性研究」,國立成功大學環境工程研究所博士論文。
陳彥男,鄭幸雄,(2002),「三段式流體化床生物程序處理壓克力人造纖維製程廢水之程序研究」,國立成功大學環境工程研究所碩士論文。
陳莉容,李季眉,(2001),「利用微生物將丙烯晴轉換成丙烯醯氨之研究」,中興大學環境工程系碩士論文。
陳文欽, 鄭幸雄, (1999)「樹脂製程之生物分解特性研究」, 第二十四屆廢水處理技術研討會論文集, pp. 15-20。
羅文益,鄭幸雄 (1995)「生物脫硝流體化床程序處理高氮壓克力製程廢水」,國立成功大學環境工程研究所碩士論文。
邱金窗,鄭幸雄 (1996)「脫硝污泥對高濃度有機氮工業廢水之生物分解特性研究」,國立成功大學環境工程研究所碩士論文。
周素圓,鄭幸雄,(1997),「硝化脫硝程序中生物活性評估技術之研究」,國立成功大學環境工程研究所碩士論文。
蔡宗岳,鄭幸雄,(1998),「兩段式生物脫硝及硝化組合程序去除ABS製程廢水中有機物與含氮化合物之研究」,國立成功大學環境工程研究所碩士論文。
林泓胤,鄭幸雄,(1999),「三段式流體化床生物程序處理高氮工業廢水之程序研究」,國立成功大學環境工程研究所碩士論文。
鍾志宏,鄭幸雄,(2000),「三段式生物程序組合處理ABS及PAN製程廢水之功能評估」,國立成功大學環境工程研究所碩士論文。
彭欽鑫,鄭幸雄,(2001),「三段式流體化床三相生物程序處理人造纖維製程廢水之生物分解性研究」,國立成功大學環境工程研究所碩士論文。
吳坤龍,鄭幸雄,(2003),「高溫厭氧菌分解PAN廢水之族群變化與功能評估」,國立成功大學環境工程研究所碩士論文。
莊蕙萍,鄭幸雄,(2004),「三段式流體化床生物程序處理PAN廢水之程序功能評估與微生物族群動態變化之探討」,國立成功大學環境工程研究所碩士論文。
張淑惠,李季眉,(1996),「氮系化合物分解微生物培養及篩選之研究」,國立中興大學環境工程所碩士論文。
王俊欽,李季眉,(1997),「高氮廢水中丙烯腈分解菌及脫氮菌之研究」,國立中興大學環境工程所碩士論文。
鄭幸雄,陳佩足,許佩瑜(1998),「氣泡呼吸儀批次試驗探討丙烯腈生物脫氨機制」,第二十三屆廢水處理技術研討會論文集,第248~255頁。
鄭幸雄,陳賢焜,林煜唐 (1995), "Enhanced Biodegradation of Organic Nitrogenous compounds in Resin Manufacturing Wastewater by Anoxic Denitrification and Oxic Nitrification Process",第二十屆廢水處理技術研討會論文集, pp. 2-1~2-5。
鄭幸雄,李季眉,陳文欽,周素圓,王俊欽,蔡宗岳 (1997),「丙烯晴氧化及脫硝分解功能評估」,第二十二屆廢水處理技術研討會論文集,448-455頁。
鄭幸雄,李季眉,陳文欽,周素圓,王俊欽,蔡宗岳 (1997),「丙烯晴氧化及脫硝分解功能評估」,第二十二屆廢水處理技術研討會論文集,台中, pp. 448-455。
鄭幸雄, 鍾志宏, 彭欽鑫 (2000)「固定化生物程序處理高氮工業廢水之探討」, 第二十五屆廢水處理技術研討會論文集, pp.234-239。
鄭幸雄, 陳彥男, 吳坤龍, 莊蕙萍 (2002)「三段式流體化床生物程序處理壓克力纖維製程廢水之程序研究」, 第二十七屆廢水處理技術研討會論文集, w-a-o11。
鄭幸雄, 莊蕙萍, 楊雅斐, 陳彥男(2002)「高溫厭氧菌分解PAN廢水反應中氫氣對有機氮裂解之影響」, 第二十七屆廢水處理技術研討會論文集, w-a-o24。
鄭幸雄, 莊蕙萍, 陳彥男, 彭欽鑫(2002)「厭氧污泥、脫硝污泥及硝化污泥對PAN廢水之生物可分解性研究」, 第二十七屆廢水處理技術研討會論文集, w-a-o31。
鄭幸雄, 吳坤龍, 曾怡禎, 莊蕙萍(2003)「高溫厭氧流體化床處理PAN人造纖維廢水之微生物族群群態研究」, 第二十八屆廢水處理技術研討會論文集。
鄭幸雄, 莊蕙萍, 楊雅斐(2003)「三段式流體化床生物程序中脫硝流體化床處理壓克力製程廢水之研究」, 第二十八屆廢水處理技術研討會論文集。
鄭幸雄, 楊雅斐, 莊蕙萍(2003)「硝化污泥在不同pH與溫度下對氨氮降解之影響」, 第二十八屆廢水處理技術研討會論文集。