簡易檢索 / 詳目顯示

研究生: 盧丞齊
Loh, Cherng-Chyi
論文名稱: 利用銅粉及PLA複合線材3D列印金屬零件之脫脂及燒結過程模擬研究
Simulation of Debinding and Sintering Process of 3D Printed Metallic Parts Made by Copper Powder-PLA Composite Filament
指導教授: 鄭金祥
Cheng, Chin-Hsiang
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 63
中文關鍵詞: 3D金屬列印模擬脫脂燒結
外文關鍵詞: 3D metal printing, numerical simulation, thermal debinding, sintering
相關次數: 點閱:65下載:20
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究旨模擬使用銅粉-聚乳酸(PLA)複合線材3D列印金屬零件的脫脂過程及燒結過程。與傳統利用純金屬粉末的3D金屬列印方法相比,利用金屬粉末-PLA複合線材製造金屬零件極大地降低了製造金屬零件的成本。此製造方法裡,脫脂和燒結過程對於製造金屬零件的性能有著關鍵影響。本研究使用質量百分比為90%銅粉及10%PLA的線材製造試樣,在3D列印完成後,列印品被放置在高溫窯中按照預設的溫度進行脫脂及燒結反應。在脫脂過程中,粘結劑PLA將被分解後燃燒,從試樣中移除。之後,溫度在燒結過程中被提高至低於銅的熔點但是足夠高使得銅粒子能夠進行燒結反應。一般情況下,在整個製造過程中所需的時間超過24小時,不包括3D列印時間。基於開發的模型,本研究對整個過程進行數值模擬,試圖提高製造效率。本研究的目的是開發一個完整而新穎的數值模塊,用於金屬列印零件的熱處理過程,助於理解在脫脂反應中PLA去除和燒結反應的物理本質。

    The current study aims to develop a theoretical model for simulation of thermal debinding and sintering processes for 3D printing metallic parts using copper polyacrylamide (PLA) composite filaments. Compared to the traditional 3D metal printing methods employing pure metal powders, this approach greatly reduces the cost of manufacturing the metallic parts. In this approach, the debinding and sintering processes play a crucial role in achieving desired properties of metallic parts fabricated. After being printed, the printed specimen is placed in a high-temperature kiln where it experiences debinding and sintering processes to form solid metal by following prescribed recipes Filament with a mass composition of 90% copper powder and 10% of PLA is used to print the specimens. In the thermal debinding process, the binder PLA is decomposed and removed from the specimens. Then, in the sintering process the printed part without PLA is interested by raising its temperature to a value below melting point of copper but high enough for copper particles to bond together. In general, the time required in the entire fabrication process exceeds 24 hours, excluding the 3D printing time. Based on the developed model, this study performs a numerical simulation of the entire process in an attempt to improve the efficiency of the fabrication. The goal of present study is to develop a complete and novel numerical module for the thermal treatment process of the metallic printed parts which are necessary to understanding the physical insight of the PLA removal and sintering processes.

    摘要 I ABSTRACT II ACKNOWLEDGEMENT III LIST OF TABLES VI LIST OF FIGURES VII NOMENCLATURE VIII CHAPTER 1 INTRODUCTION 1 1-1.3D Metal Printing using PLA Metal Powder Composite Filament 1 1-2.Literature Review 4 1-3.Study Motivation 7 1-4.Purpose of Study 8 1-5.Thesis Outline 9 CHAPTER 2 FABRICATION METHOD 10 2-1. 3D Metal Printing 10 2-2. Thermal Treatment 11 2-3. Post-Processing 12 CHAPTER 3 THEORETICAL MODEL 13 3-1. Governing Equations 13 3-1-1. Radiation between Kiln and Crucible 14 3-1-2. Conduction in Crucible 14 3-1-3. Conduction in Graphite Powder 14 3-1-4. Printed Part 15 3-1-4-1. Thermal Debinding Process 15 3-1-4-2. Sintering Process 17 3-2. Boundary Conditions 18 3-3. Material Properties 18 3-3-1. Material Properties- Kiln 18 3-3-2. Material Properties- Graphite Crucible 18 3-3-3. Material Properties- Graphite Powder 19 3-3-4. Material Properties- Printed Part 19 CHAPTER 4 RESULTS AND DISCUSSION 20 4-1 Grid-Independence Check 20 4-1-1 Time Step Size 20 4-1-2 Element Number 20 4-2 Parametric Analysis 20 4-2-1 Crucible Shape 20 4-2-2 Printed Part Size 22 CHAPTER 5 CONCLUSIONS 24 REFERENCES 26

    1.B.Blakey-Milner, P.Gradl, G.Snedden, M.Brooks, J.Pitot, E.Lopez, M.Leary, F.Berto, A.d.Plessis, “Metal additive manufacturing in aerospace: A review,” Materials & Design, Vol. 209, 2021.
    2.V.Mohanavel, K.S.Ashraff Ali, K.Ranganathan, J.Allen Jeffrey, M.M. Ravikumar, S.Rajkumar, “The roles and applications of additive manufacturing in the aerospace and automobile sector,” Materials Today: Proceedings, Vol. 47(1), pp. 405-409, 2021.
    3.T.Duda, L.V.Raghavan, “3D Metal Printing Technology,” IFAC-PapersOnLine, Vol. 49 (29), pp. 103-110, 2016.
    4.A. Gebhardt, Understanding additive manufacturing. Carl Hanser Verlag, Berlin, 2011.
    5.A.Mostafaei, A.M.Elliott, J.E.Barnes, F.Li, W.Tan, C.L.Cramer, P.Nandwana, M.Chmielus, “Binder jet 3D printing—Process parameters, materials, properties, modeling, and challenges,” Progress in Materials Science, Vol. 119, 2021.
    6.S.L.Sing, C.F.Tey, J.H.K.Tan, S.Huang, W.Y.Yeong, “2 - 3D printing of metals in rapid prototyping of biomaterials: Techniques in additive manufacturing,” Woodhead Publishing Series in Biomaterials, Rapid Prototyping of Biomaterials (Second Edition), Woodhead Publishing, pp. 17-40, 2020.
    7.Das, S., Bourell, D.L. & Babu, S.S., “Metallic materials for 3D printing,” MRS Bulletin, Vol. 41, pp. 729–741, 2016.
    8.Boeing 3D printing hompage: https://www.boeing.com/features/innovation-quarterly/2022/01/chinook-3d-printing.page (still available in June 2023).
    9.General Electric 3D printing homepage: https://www.ge.com/additive/ (still available in June 2023).
    10.R.Varghese, S.Salvi, P.Sood, J.Karsiya, D.Kumar, G.Tedla, A.M.Jarabek, P.Byrley, W.Boyes, K.Rogers, “Human exposure to metals in consumer-focused fused filament fabrication (FFF)/ 3D printing processes,” Science of The Total Environment, Vol. 814, 2022.
    11.M.Benamira, N.Benhassine, A.Ayad, A.Dekhane, “Investigation of printing parameters effects on mechanical and failure properties of 3D printed PLA,” Engineering Failure Analysis, Vol. 148, pp. 1350-6307, 2023.
    12.M.M.Zerankeshi, S.S.Sayedain, M.Tavangarifard, R.Alizadeh, “Developing a novel technique for the fabrication of PLA-graphite composite filaments using FDM 3D printing process,” Ceramics International, Vol. 48, pp. 31850–31858, 2022.
    13.S. Ramanadha reddy and Dr. N. Venkatachalapathi, “A review on characteristic variation in PLA material with a combination of various nano composites,” Materials Today: Proceedings, https://doi.org/10.1016/j.matpr.2023.04.616
    14.G.Rajeshkumar, S.A.Seshadri, G.L.Devnani, M.R.Sanjay, S.Siengchin, J.P.Maran, N.A.Al-Dhabi, P.Karuppiah, V.A.Mariadhas, N.Sivarajasekar, A.R.Anuf, “Environment friendly, renewable and sustainable poly lactic acid (PLA) based natural fiber reinforced composites – A comprehensive review,” Journal of Cleaner Production, Vol. 310, 2021.
    15.A.K.Trivedi, M.K.Gupta and H.Singh, “PLA based biocomposites for sustainable products: A review,” Advanced Industrial and Engineering Polymer Research, https://doi.org/10.1016/j.aiepr.2023.02.002.
    16.Homepage of BASF: https://www.ultrafusefff.com/ (Available on June 2023)
    17.Homepage of The Virtual Foundry: https://thevirtualfoundry.com (Available on June 2023)
    18.D.M.Hajare, T.S.Gajbhiye, “Additive manufacturing (3D printing): Recent progress on advancement of materials and challenges,” Materials Today: Proceedings, Vol. 58(2), pp. 736-743, 2022.
    19.J.B.Li, Z.G.Xie, X.H.Zhang, Q.G.Zeng, H.J.Liu, “Study of Metal Powder Extrusion and Accumulating Rapid Prototyping,” Key Engineering Materials, Vol. 443, pp. 81-86, 2010.
    20.A.J.Arockiam, K.Subramanian, R.G.Padmanabhan, R.Selvaraj, D.K.Bagal, S. Rajesh, “A review on PLA with different fillers used as a filament in 3D printing,” Materials Today: Proceedings, Vol. 50(5), pp. 2057-2064, 2022.
    21.S.Hwang, E.I.Reyes, K.S.Moon, R.C.Rumpf, N.S.Kim, “Thermo-mechanical Characterization of Metal/Polymer Composite Filaments and Printing Parameter Study for Fused Deposition Modeling in the 3D Printing Process,” The Minerals, Metals & Materials Society, Vol.44, No.3, pp.771-777, 2014.
    22.J.Laureto, J.Tomasi, J.A.King, J.M.Pearce, “Thermal properties of 3-D printed polylactic acid-metal composites,” Progress in Additive Manufacturing, Vol. 2, pp. 57-71, 2017.
    23.N.D.Ebrahimi, Y.S.Ju, “Thermal conductivity of sintered copper samples prepared using 3D printing-compatible polymer composite filaments,” Additive Manufacturing, Vol. 24, pp. 478-485, 2018.
    24.O.I.Ayeni, “Sintering and Characterizations of 3D Printed Bronze Metal Filament,” Master Thesis, Department of Mechanical and Energy Engineering, University of Purdue, Indianapolis, Indiana, 2018.
    25.K.Pietrak, T.S.Wisniewski, “A review of models for effective thermal conductivity of composite materials,” Journal of Power Technologies, Vol. 95 (1), pp.14-24, 2015.
    26.Y.J.Zhang, “Fabrication of Metallic Parts by 3D Printing Using Metallic Powder-Polylactide Composite Filament,” Master Thesis, Department of Aeronautics and Astronautics, National Cheng Kung University, Taiwan, 2021.
    27.S.W.Luo, “3D Printing Process Using Composite Filament Made with Stainless Steel Powder and Polylactic Acid,” Master Thesis, Department of Aeronautics and Astronautics, National Cheng Kung Univerisity, Taiwan, 2022.
    28.T.Kraft, H.Riedel, “Numerical simulation of solid state sintering;model and application,” Journal of the European Ceramic Society, Vol. 24, pp. 345–361, 2004.
    29.J.Song, J.C.Gelin, T.Barrière, B.Liu, “Experiments and numerical modelling of solid state sintering for316L stainless steel components, Journal of Materials Processing Technology,” Vol. 177, pp. 352–355, 2006.
    30.S.H.Chung, Y.S.Kwon, S.J.Park, and R.M.German, “Modeling and Simulation of Press and Sinter Powder Metallurgy,” ASM Handbook, Vol. 22B, Metals Process Simulation, 2010.
    31.A.Karimzadeh, M.R.Ayatollahi, and M.Alizadeh, “Finite element simulation of nano-indentation experiment on aluminum 1100,” Computational Materials Science, Vol. 81, pp. 595–600, 2014.
    32.P.Rando, J.Hangman, B.Wattle, L.Corny, V.Meier, M.Ram aioli, “Numerical Simulations of Sintering Coupled With Moisture Transfer,” Powder Technology, Vol. 395, pp. 93-102, 2022.
    33.P.Brando, M.Ram aioli, “Numerical simulations of sintering coupled with heat transfer and application to 3D printing,” Additive Manufacturing, Vol. 50, pp. 102567, 2022.
    34.C.H.Cheng, C.C.Loh, and Y.J.Zhang, “Simulation of Metallic Parts by 3D Printing Using Metallic Powder–Polyacrylamide Composite Filament,” Progress in Additive Manufacturing, Vol. 7(3), pp. 495-508, 2022.
    35.T.L.Bergman, D.P.DeWitt, A.S.Lavine, Frank P. Incropera’s Principles of Heat and Mass Transfer, Global Edition, Wiley, 2017.
    36.N.R.Pradhan, H.Duan, J.Liand, and G.S.Iannacchione, “The specific heat and effective thermal conductivity of composites containing single-wall and multi- wall carbon nanobots”, Nanotechnology, Vol. 20(24) pp. 245705, 2019.
    37.Table of Impassivity of Various Surfaces For Infrared Thermometer, Transformer Technikon MIT Know.
    38.https://gchem.cm.utexas.edu/data/section2.php?target=heat-capacities.php (Available on December 2022).
    39.J.Ciao, B.Ground, C.Inland, J.Rastafarian, K.Tang, K.Seville, and M.Gangsta, “The Use of Eutectic Fe-Si-B Alloy as a Phase Change Material in Thermal Energy Storage Systems,” Materials (Basel), Vol. 12(14), 2019.
    40.N.R.Prada, H.Dan, J.Anglia, and G.S.Channelization, “The specific heat and effective thermal conductivity of composites containing single-wall and multi-wall carbon nanobots”, Nanotechnology, Vol. 20, pp. 7, 2009.
    41.Eddy P., Unassertive C., Haskell, Spatula and Krishna, Veejay. “Enhancement of thermal conductivity of PCM using filler graphite powder materials.” IOP Conference Series: Materials Science and Engineering, Vol.402, pp.12173 ,2018.
    42.Graphite Powder | AMERICAN ELEMENTS ®
    Y.C. Chain, C. Anglia, S.H. Li, and S.H. Yang, “Combustion kinetics and emission characteristics of policy aromatic hydrocarbons from poly lactic acid combustion,” Journal of the Air & Waste Management Association, Vol. 60(7), pp. 849-855, 2010.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE