簡易檢索 / 詳目顯示

研究生: 劉益仲
Liu, Yi-Chung
論文名稱: 低雷諾數下三維薄翼之低展弦比效應之研究
Investigation of low aspect-ratio effect on thin-plate wing at low Reynolds numbers
指導教授: 蕭飛賓
Hsiao, Fei-Bin,
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2005
畢業學年度: 93
語文別: 英文
論文頁數: 75
中文關鍵詞: 翼尖渦流低展弦比微飛行器
外文關鍵詞: low aspect ratios, micro aerial vehicle, wingtip vortices
相關次數: 點閱:91下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本論文以實驗方法研究三維薄板低展弦比(AR=1.0~2.0)機翼在雷諾數介於5x104~1x105條件下之空氣動力特性及流場結構,主要在探討展弦比的影響。實驗所量測的基本空氣動力特性包含升力、阻力及俯仰力矩係數,並進一步分析與討論升力係數之線性與非線性特徵、升阻比、低雷諾數效應及誘導阻力特性。三維流場結構之觀察實驗於低速煙洞中進行,主要觀察低展弦比機翼翼尖渦流結構,並配合實驗結果進行分析比較。根據實驗分析及流場觀察結果得知,翼尖渦流與機翼上翼面流場之交互作用對低展弦比機翼之空氣動力特性有極大的影響,使得低展弦比薄翼擁有較高的失速攻角,並且具有非線性升力變化特性。這兩種特性均與展弦比有關。當展弦比低於1.3時,失速攻角即大幅增高;而展弦比低於1.6時,低攻角範圍(00~150)的非線性升力特性即十分顯著。由此結果可知,在高攻角與低攻角範圍下,翼尖渦流影響翼表面氣流的型態並不相同。在本實驗的雷諾數範圍內,空氣動力特性並未隨雷諾數變化而有明顯改變,升力及阻力與攻角之關係也無遲滯現象存在。本論文各項結果,可作為低展弦比微飛行器設計所需之參考。

      The thesis experimentally studies the aerodynamic performances and the corresponding flow structures on thin-plate wings with aspect ratios between 1.0 and 2.0 and Reynolds numbers between 5x104~1x105 in a low speed wing tunnel. The measurements of the wing models include lift, drag and pitch moment, and the aerodynamic properties to be analyzed contain the slopes of linear and nonlinear lift curves, lift to drag ratios, low Reynolds numbers effect and induce drag. The investigation of flow structures was conducted by smoke-wire visualization technique to realize the flow behaviors in a smoke tunnel. According to the results of experiments, the aerodynamic properties for low aspect ratio thin-plate wing below 1.3 was deeply affected by the generation of tip vortices on the upper surface of wing models which causes the higher stall angle of attack appear to be nonlinear for the aspect ratios below 1.6 within the angle of attack ranges between 00and 150. The effect of low Reynolds numbers on lift and drag coefficients in low aspect ratio wings confirms that the hysteresis phenomenon was not apparent in the present study. In steady, regarding the lift-to-drag ratios, the increase of lift force would follow the increase of drag force which clearly causes the maximum lift-to-drag ratio to occur at the low angle of attack between 30 to 60 .All of the experimental results in the present thesis can provide a data base for the design of micro aerial vehicle using the thin-plate for wings.

    ABSTRACT IN CHINESE.........................I ABSTRACT IN ENGLISH.........................II ACKNOWLEDGEMENT.............................III CONTENTS....................................IV LIST OF TABLE...............................VI LIST OF FIGURE..............................VII APPENDIX....................................X NOMENCLATURE................................XII I. INTRODUCTION........................1 1-1 Thin Airfoil........................2 1-2 Low Reynolds Numbers................3 1-2-1 Separation Bubble...................4 1-2-2 The Hysteresis Effect...............4 1-3 Low Aspect Ratios in Low Reynolds Numbers......................................5 1-4 The Slope of Lift Curves............6 1-4-1 Linear Lift.........................7 1-4-2 Nonlinear Lift......................8 1-5 Flow Structure......................10 1-6 Motivation and Objectives...........11 II. EXPERIMENT APPARATUS................13 2-1 Wing Tunnel.........................13 2-2 Experiment Apparatus................13 2-3 Flow Visualization..................15 2-4 Uncertainty Analysis................17 III. EXPERIMENT RESULT AND DISSUCTION.......19 3-1 General Observations................19 3-2 Nonlinear of Lift Curves............20 3-3 Lift to Drag Ratios.................23 3-4 Drag Polar..........................25 3-5 Reynolds Numbers Effect.............26 3-6 Flow Structure......................27 IV. CONCLUDING REMARKS ..................29 REFERENCE ....................................32 APPENDIX.....................................61 A-1 Aerodynamic Results: Aspect Ratios.......61 A-2 Aerodynamic Results: Reynolds Numbers....65 A-3 Aerodynamic Results: Thickness Ratios....70 VITA.........................................75

    [1] http://www.nd.edu/~mav/competition.htm MAV Competition in 1997 to 2002.

    [2] Mueller, T.J. “Aerodynamic Measurements at Low Reynolds Numbers for
    Fixed Wing Micro Air Vehicles” September 13-17, 1999 VKI, Belgium.

    [3] F.B. Hsiao and C.Y. Lin “Investigation on Aerodynamic Characteristic of Low-Aspect-Ratio Wings at Low Reynolds Numbers.” The thesis of master of degree. Department of Aeronautics and Astronautic, National Cheng Kung University, Taiwan , June 2002.

    [4] McMasters, J.H. and Henderson, M.L., “Low Speed single Element Airfoil Synthesis”, Tech. Soaring, Vol.2, No.2, 1980, pp.1-21

    [5] Selig, M. S., Gopalarathnam, A., Giguere, P., and Lyon, C.A., “Systematic Airfoil Design Studies at Low Reynolds Numbers,” AIAA journal, Vol. 195, pp.143-16,2001

    [6] Lamar, J. E., “Prediction of vortex flow characteristics of wings at subsonic and supersonic speeds” J. of Aircraft, 1976.

    [7] Mueller, T. J. and Torres, G. E., “Aerodynamics of Low Aspect Ratio Wings at Low Reynolds Numbers With Applications to Micro Air Vehicle Design” the thesis of doctor of Philosophy, Department of Aerospace and Mechanical Engineering, Notre Dame, Indiana, April 2002.

    [8] Mueller, T. J. and Torres, G. E., “Low-Aspect-Ratio Wing Aerodynamics at Low Reynolds Numbers” AIAA Journal Vol.42.No.5,pp.865-873, 2004.

    [9] Bartlett, G. E. and Vidal, R. J., “ Experimental Investigation of Influence of Edge Shape on The Aerodynamic Characteristics of Low Aspect Ratio Wings at Low Speeds” Journal of the Aeronautical Sciences, 1955.

    [10] Polhamus, E. C., “A Concept of The Vortex Lift of Sharp-Edge Delta Wings Based on a Leading-edge-suction Analogy” Technical Report TND-3767,NASA, 1966

    [11] Yongsheng Lian and Wei shyy ,“ Three-dimensional fluid-structure interactions of a Membrance wing for MAV applications,” AIAA Journal , 2003.

    [12] Lowry, J. G. and Polhamus, E. C.,” A Method For Predictind Lift Increments Due To Flap Deflection at Low Angles of Attack In Incompressible Flow,” Gottingen TN3911, 1957.

    [13] Tang Jian and Zhu Ke-Qin ,“Numerical and Experimental study of flow structure of low-Aspect-Ratio Wing ,” Journal of aircraft , 2004.

    [14] Mueller, T. J. and Torres, G. E., “Aerodynamic Characteristics of Low Aspect Ratio Wings At Low Reynolds Numbers” AIAA Journal Vol. 195, pp115-140, 2001.

    [15] Hsiao, F. B., and Hsu, C C., “Numerical Prediction of Aerodynamic Performance for Low Reynolds Number Airfoils”, Journal of Aircraft, Vol.26, pp.689-629, 1989.

    [16] Mueller, T. J., “The Influence of Laminar Separation and Transition on Low Reynolds Number Airfoil Hysteresis,” Journal of Aircraft, Vol.22, pp763-770,1985.

    [17] Hsiao, F. B., and Liu, C. F. and Tang, Z., “Aerodynamic Performance and Flow Structure Studies of a Low Reynolds Number Airfoil”, AIAA Journal, Vol.27, pp129-137, 1989.

    [18] Hsiao, F. B., Chang, C. Y, Hsu, C. C. ,Wang, D. B, “Experimental Studies on The Aerodynamic Performance for Finite Wing at Low Reynolds Number”, J. Chinese Society of Mechanical Engineers, Vol.23, No.6, pp.517-524, 2002.

    [19] Lee, C.S., Wang, D. B., Hsiao, F.B., Liu, Y.C., Srigrarom, S., “Classification of Airfoils by Abnormal Lift Curves at low Reynolds Numbers,” 24th International Congress on Aeronautical Science, Yokohama, Japan, ICAS 2004-3.10.2, August 28-Sep. 3, 2004.

    [20] F.B. Hsiao ,C.H. Chiang ,C.Y. Lin ,Y.C Liu, “Investigation of Aerodynamic Performance on Low-Aspect-Ratio Wings at Low Reynolds Numbers”, submitted to 4th Conference on Bluff Body Wakes and Vortex-induced Vibrations, Santorini Island, Greece, 21-24 June 2005

    [21] H, werle, ONERA France, “Hydrodynamic Flow Visualization”,Annual Review of Fluid Mechanics.

    [22] ISSMO, “the International Society of Structure and Multidisciplinary Optimization”, http://www.aero.ulf.edu/~issmo/.

    [23] Wang, D. B,” Experimental Study and Mathematical Modeling of Aerodynamic Transition For 2-D Airfoil at Low Reynolds Numbers ” the thesis of Master degree in NCKU.

    [24] Lin, C. Y,” Investigation of Aerodynamic Performance on Low Aspect Ratio Wings at Low Reynolds Numbers ” the thesis of Master degree in NCKU.

    [25] Chang C. Y,” Aerodynamic Performance Investigation for Finite wing at Low Reynolds numbers” the thesis of Master degree in NCKU.

    [26] Carmichael, B. H,” Low Reynolds Number Airfoil Survey”, Vol. I, NASA Contractor Report 165803, 1981.

    [27] Mueller, T J.,” Low Reynolds Number Vehicles” Edited By Reshotko, E., AGARD-AG-288, 1985.

    [28] Jones, B. M., “An Experimental Study of the Stalling of Wings” Gottingen Reports and Memoranda No.1588,1933

    [29] Bollay, W., “ A non-linear wing theory and its application to rectangular wings of small aspect ratio” Zeitschrift Fur Angewandte Mathematik and Mechanik, 1939.

    [30] Hoerner, S. F. and Borst, H.V., “Fluid-dynamic lift” Hoerner Fluid Dynabics, Brick Town, NJ, 1975.

    [31] Hoerner, S. F., “Fluid-Dynamic drag” Hoerner Fluid Dynamics, Brick Town, NJ, 1965.

    下載圖示 校內:立即公開
    校外:2005-08-05公開
    QR CODE