簡易檢索 / 詳目顯示

研究生: 高培鈞
Kao, Pei-Chun
論文名稱: 以螺旋藻進行二氧化碳固定及藻藍素生產之技術開發與製程最適化
Technology development and process optimization of CO2 biofixation and C-phycocyanin production with Spirulina sp.
指導教授: 張嘉修
Chang, Jo-Shu
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 114
中文關鍵詞: 螺旋藻藻藍素萃取光生物反應器設計光照強度碳酸氫鈉氮源戶外培養硫酸銨鹽析活性碳吸附離子交換層析
外文關鍵詞: Spirulina platensis, CO2 fixation, C-phycocyanin, extraction, photobioreactor design, light intensity, NaHCO3, nitrate, pH control, outdoor cultivation, purification, fraction precipitation, activated carbon, ion exchange chromatography
相關次數: 點閱:149下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 工業革命以來,溫室氣體的大量排放導致溫室效應日益嚴重,也因此節能減碳成為世界各國之重要議題,近年來以螺旋藻進行生物固碳之策略日趨受到重視。由於藍綠菌有著高生長速率之特性,可有效利用光合作用將CO2固定並轉化為富含藻藍素之螺旋藻藻體,經適當萃取後可應用於保健食品、食品添加劑、化妝品等領域。因此,以螺旋藻同時進行生物固碳與藻藍素之生產是可行的方案。
    本研究首先建立最適化藻藍素之萃取技術,主要是探討不同破藻方式及不同緩衝溶液濃度對藻藍素萃取效能之影響。破藻方式測試結果顯示,直接利用緩衝溶液所造成之滲透壓約經過12小時的萃取時間即可達到近100%的藻藍素回收率,當磷酸鹽緩衝溶液濃度由0.2 M降低為0.15 M時仍具有相當較高之藻藍素萃取效能。而不同藻粉-溶劑比例則對對藻藍素之萃取效率沒有明顯之影響。本研究亦針對藻藍素純化流程進行探討,分別利用硫酸銨鹽析沉澱法與活性碳吸附法進行測試。結果顯示以40%飽和濃度之硫酸銨進行蛋白質純化能有效提高藻藍素之純度,其純度(A615/A280)可由原本的0.99提升至1.86 (回收率為90.1%)。此外,本研究亦嘗試以陰離子交換層析法進行藻藍素之純化,經過層析方法最適化後藻藍素之純度可達到3.62 (回收率為44%)。進一步結合鹽析法以及陰離子交換層析法,可將藻藍素之純度提升至4.33 (回收率為33%)。
    本研究接著利用不同培養策略以同時提升螺旋藻之藻體生長、二氧化碳固定效率及藻藍素之生產效能。首先利用平板式光生物反應器進行藻體培養以減少光遮蔽效應。培養結果發現與圓柱型反應器相比之下,其藻體產量、二氧化碳移除效能皆能有效提升兩倍以上。接著,本研究利用平板式光生物反應器探討不同光照培養條件下對螺旋藻生長、CO2移除效率及藻藍素累積之影響。結果發現當光強度由100 µmol/m2/s提升至700 µmol/m2/s,其平均藻體產率由0.14 g/L/d提升至0.74 g/L/d,最大藻藍素產率亦由0.02 g/L/d提升至0.11 g/L/d,且CO2固定效率約提高約3倍。此外,實驗過程中發現培養基中之碳酸氫鈉於藻體培養過程中並未被有效運用,因此本研究嘗試將碳酸氫鈉之初始濃度減少至原先的25%,結果發現其藻體生長速率與原初始濃度相似,且藻藍素之產率亦能維持一樣的產值,且降低碳酸氫鈉之使用量可有效減少培養基成本約55%。
    另外,文獻證實在缺氮環境下,藻體會利用自身藻藍素作為備用氮源,因此大幅降低藻體中藻藍素之含量。因此,本研究嘗試提升培養基之初始氮源濃度,結果發現此策略可大幅提升藻體產率與CO2移除效率,且其藻藍素產率由原本的0.11 g/L/d提升至0.13 g/L/d。再者,本研究測試不同溫度環境對藻體培養的影響。結果發現32oC之溫度培養條件較適合螺旋藻之生長,而溫度高於35oC或低於30oC則會開始降低其生長速率。
    最後,本研究以平版型反應器培養該螺旋藻,選用最適化光照、培養基濃度以及溫度,並嘗試利用2.5%之二氧化碳氣體進行pH值之調控以測試pH值對藻體培養之影響。實驗結果發現,pH值控制在9.0與9.5有較好的藻體生長結果。此外,利用此pH值調控策略,其二氧化碳移除效率能由13.6%大幅提升至65.1%,且藻藍素含量及產率亦分別提升至16.8%與1.7 g/L/d。利用上述之方法調控pH值,除了可以排除利用酸液進行pH調控可能遭遇的問題外,二氧化碳固定效能及藻藍素產率亦可有效提升。本研究亦測試螺旋藻之室外培養的可行性,發現螺旋藻在戶外培養過程中對高溫及高光照強度之耐受性相當良好,而其藻體產率、二氧化碳移除速率與藻藍素產率分別為0.13 g/L/d, 0.21 g/L/d和0.02 g/L/d,相較於室內培養的結果,其效率約分別下降87, 87, 與88%。

    Global climate change has become a critical issue due to the influence of the green house effect. How to conserve energy and reduce carbon dioxide emissions has been one of the most urgent global issues. Recently, biofixation of CO2 by Spirulina has attracted much attention due to its efficient CO2 fixation ability and the resulting biomass of Spirulina platensis is rich in C-phycocyanin (C-PC), which is widely used as colorants, diagnosis reagent, nutritious supplements, and pharmaceuticals. Therefore, using the Spirulina platensis to mitigate CO2 emissions and simultaneously produces C-PC has a great potential.
    This work firstly made efforts on developing the C-phycocyanin extraction process. For the optimization of the cell disruption process, direct utilization of the osmotic pressure from different phosphate buffer concentration exhibited the highest extraction efficiency, which could reach to nearly 100% recovery after 12 hour extraction time. Reducing the phosphate buffer concentration from 0.2 M to 0.15 M, the extraction efficiency still remained the same. Different biomass-solvent ratio did not significantly affect the extraction efficiency of C-phycocyanin. The purification process of C-phycocyanin was also developed in this study. Fractional precipitation and adsorption of protein with activated carbon were applied. The results show that fraction precipitation by 40% saturation of ammonium sulfate could give better purification results (1.86 purity and 90% recovery). In addition, the anion exchange chromatography (via fast protein liquid chromatography) was applied for C-PC purification, achieving a C-PC purity of 3.62 (44% recovery). Further combining fractional precipitation and anion exchange chromatography, the purity of C-PC was further increased to 4.33 with 33% recovery.
    This work was also undertaken to optimize the microalgae cultivation processes to obtain higher biomass productivity, CO2 removal rate and C-phycocyanin productivity. First, a flat-type photobioreactor was developed to reduce light shading effect. The biomass production, overall biomass productivity and CO2 removal rate by using flat-type increased by 2.1 fold when compared with the flask photobioreactor. Next, the effect of irradiation conditions on the performance of cell growth, CO2 fixation rate and C-PC production of Spirulina sp. was further investigated using the flat-type reactor. As the light intensity increased from 100 to 700 µmol/m2/s, the biomass productivity sharply increased from 0.14 to 0.74 g/L/d along with approximately three-fold increase in CO2 removal efficiency. In addition, the maximum C-PC productivity also increased from 0.02 to 0.11 g/L/d. After determining the suitable light intensity, the concentration of key components in the culture medium was adjusted to further enhance the performance of CO2 fixation and C-PC production and reduce the cost. First, to reduce the medium cost, CO2 was used as the main carbon source, while the initial concentration of NaHCO3 was decreased. The results show that reducing NaHCO3 concentration to 25% of the original one did not significantly affect the cell growth and C-phycocyanin production, but the medium cost could be lowered by 55%. Second, since C-PC content of the Spirulina platensis strain markedly decreased under nitrogen-depleting conditions, the initial NaNO3 concentration was adjusted to extend the cultivation period of the Spirulina platensis culture before reaching nitrogen depletion. This strategy further elevated the maximum C-PC productivity from 0.11 g/L/d to 0.13 g/L/d. As for the temperature effect on the cultivation of Spirulina platensis, it was found that controlling the temperature at 32oC gave the best cell growth, CO2 removal rate and C-PC production, while cell growth rate decreased when the temperature was higher than 35oC or lower than 30oC. Finally, while using the suitable photobioreactor, light intensity, medium composition and temperature, the Spirulina platensis was cultivated with an innovated pH control system, in which the culture pH was controlled via the feeding of 2.5% CO2, instead of acid/alkaline titration. The results show that controlling pH at 9.0 and 9.5 was suitable for cell growth, but further increased in pH slightly inhibited the cell growth. In addition, the CO2 removal efficiency sharply increased from 13.6% to 65.1% by applying the CO2-mediated pH control strategy. Moreover, the C-PC content and productivity were also increased to 16.8% and 0.17 g/L/d, respectively, with the CO2-mediated pH control. Therefore, the proposed pH control system could avoid the problem of excessive addition of acid or alkaline, resulting in better CO2 fixation efficiency and higher C-phycocyanin productivity. Moreover, the feasibility of outdoor cultivation of Spirulina platensis was also examined. The results show that Spirulina could tolerate high temperature and high light intensity encountered during outdoor cultivation, giving a biomass productivity, CO2 consumption rate and C-PC productivity of 0.13 g/L/d, 0.21 g/L/d and 0.02 g/L/d, respectively. This performance is lower than that obtained from indoor cultivation.

    摘要 ii Abstract v Acknowledgment ix Contents xi List of tables xv List of figures xvi Chapter 1 Introduction 1 1-1 Background 1 1-2 Motivation and purpose 1 Chapter 2 Literature review 5 2-1 Cyanobacteria 5 2-1-1 Introduction of cyanobacteria 5 2-1-2 Introduction and application of Spirulina sp.. 6 2-2 Photosynthesis and CO2 fixation by Spirulina sp. 8 2-2-1 Introduction of cyanobacteria 8 2-2-2 Introduction and application of Spirulina sp.. 9 2-2-3 CO2 concentrating mechanism in cyanobacteria 11 2-3 Introduction of C-phycocyanin 17 2-3-1 Phycobiliproteins and C-phycocyanin 17 2-3-2 The structure of C-phycocyanin.. 19 2-3-3 The application of C-PC 20 2-3-4 Methods for C-PC extraction 23 2-3-5 Purification of C-phycocynin. 24 2-4 Factors affecting the culture of microalgae, CO2 removal rate and C-PC production. 25 2-4-1 Light sourse 25 2-4-2 Photobioreactor 27 2-4-3 Medium component.. 27 2-4-4 Temperature effect 28 2-4-5 pH effect.. 29 2-4-6 CO2 feeding 31 Chapter 3 Materials and methods 32 3-1 Chemicals and materials 32 3-2 Equipment 33 3-3 The analytical method 34 3-3-1 Measurement of biomass concentration and growth kinetic parameters 34 3-3-2 Determination of the nitrate concentration in culturing medium 35 3-3-3 Determination of the total organic/inorganic carbon concentration in culturing medium.. 36 3-3-4 Determination of the CO2 removal efficiency and CO2 consumption rate 36 3-3-5 Determination of the C-PC content of the biomass and the purity of the C-PC extract 37 3-4 Microalgae strain and the composition of the culturing medium 38 3-5 Development of the C-phycocyanin extraction procedure 39 3-5-1 Cell disruption method 39 3-5-2 Solvent test 40 3-6 Engineering strategies for enhancing the biomass productivity, CO2 removal rate and C-PC productivity. 41 3-6-1 Photobioreactor design 41 3-6-2 Determination of the suitable light intensity for the biomass productivity, CO2 removal rate and C-PC productivity 43 3-6-3 The adjustment of medium composition. 43 3-6-4 Determination of the suitable temperature for the biomass productivity, CO2 removal rate and C-PC productivity 44 3-6-5 pH control with CO2 feeding strategy 44 3-6-6 Outdoor cultivation test 45 3-7 Development of C-PC purification process 46 3-8 Determination of antioxidant activity of C-PC 46 Chapter 4 Results and discussions 48 4-1 Development of the C-phycocyanin extraction process 48 4-1-1 Cell disruption process 48 4-1-2 Buffer concentration testing 50 4-1-3 Biomass-solvent ratio. 52 4-2 Engineering strategies for enhancing the biomass productivity, CO2 removal rate and C-PC productivity 54 4-2-1 Photobioreactor design 54 4-2-2 Light intensity strategy 56 4-2-3 Determination of suitable initial NaHCO3 concentration 61 4-2-4 Effect of the nitrate concentration on cell growth, CO2 removal rate and C-PC productivity 63 4-2-5 Determination of the suitable temperature condition for cell growth, CO2 removal rate and C-PC productivity 68 4-2-6 pH controlling with CO2 feeding strategy 71 4-2-7 Outdoor cultivation testing 75 4-3 The purification of C-phycocyanin 79 4-3-1 Fraction precipitation by ammonium sulfate and adsorption of proteins by activated charcoal 79 4-3-2 Purification of C-PC by FPLC (fast protein liquid chromatography) 83 4-3-3 Antioxidant properties of C-PC 90 Chapter 5 Conclusions 91 Chapter 6 Future perspectives 96 Reference 97 Appendix 111

    Allen, M.M., Smith, A.J. Nitrogen Chlorosis in Blue-Green Algae. Archiv Fur Mikrobiologie, 69(2), 114-&.1969

    Anning, T., Harris, G., Geider, R.J. Thermal acclimation in the marine diatom Chaetoceros calcitrans (Bacillariophyceae). European Journal of Phycology, 36(3), 233-241. 2001

    Antelo, F.S., Anschau, A., Costa, J.A.V., Kalil, S.J. Extraction and Purification of C-phycocyanin from Spirulina platensis in Conventional and Integrated Aqueous Two-Phase Systems. Journal of the Brazilian Chemical Society, 21(5), 921-926. 2010

    Babu, T.S., Kumar, A., Varma, A.K. Effect of light quality on phycobilisome components of the cyanobacterium Spirulina platensis. Plant Physiology, 95(2), 492-497. 1991

    Badger, M.R., Kaplan, A., Berry, J.A. Internal inorganic carbon pool of Chlamydomonas reinhardtii - Evidence for a carbon-dioxide concentrating mechanism. Plant Physiology, 66(3), 407-413. 1980

    Badger, M.R., Price, G.D. The CO2 Concentrating Mechanism in cyanobacteria and microalgae. Physiologia Plantarum, 84(4), 606-615. 1992

    Badger, M.R., Price, G.D. CO2 concentrating mechanisms in cyanobacteria: molecular components, their diversity and evolution. Journal of Experimental Botany, 54(383), 609-622. 2003

    Beams, H.W., Kessel, R.G. Physical-properties of blue-green-algae - Ultracentrifugation and electron microscope studies. Protoplasma, 92(3-4), 229-242. 1977

    Belay, A., Ota, Y., Miyakawa, K., Shimamatsu, H. Current knowledge on potential health benefits of Spirulina. Journal of Applied Phycology, 5(2), 235-241. 1993

    Benedetti, S., Rinalducci, S., Benvenuti, F., Francogli, S., Pagliarani, S., Giorgi, L., Micheloni, M., D'Amici, G.M., Zolla, L., Canestrari, F. Purification and characterization of phycocyanin from the blue-green alga Aphanizomenon flos-aquae. Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences, 833(1), 12-18. 2006

    Berry, J., Bjorkman, O. Photosynthetic response and adaptation to temperature in higher plants. Annual Review of Plant Physiology and Plant Molecular Biology, 31, 491-543. 1980.

    Borowitzka, M.A. Commercial production of microalgae: ponds, tanks, tubes and fermenters. Journal of Biotechnology, 70(1-3), 313-321. 1999

    Boussiba, S., Richmond, A.E. C-phycocyanin as a storage protein in the blue-green-alga Spirulina platensis. Archives of Microbiology, 125(1-2), 143-147. 1980

    Calvin, M. 40 years of photosynthesis and related activities. Photosynthesis Research, 21(1), 3-16. 1989

    Carvalho, A.P., Pontes, I., Gaspar, H., Malcata, F.X. Metabolic relationships between macro- and micronutrients, and the eicosapentaenoic acid and docosahexaenoic acid contents of Pavlova lutheri. Enzyme and Microbial Technology, 38(3-4), 358-366. 2006

    Carvalho, J.C.M., Francisco, F.R., Almeida, K.A., Sato, S., Converti, A. Cultivation of Arthrospira (spirulina) platensis (cyanophyceae) by fed-batch addition of ammonium chloride at exponentially increasing feeding rates. Journal of Phycology, 40(3), 589-597. 2004

    Chacon-Lee, T.L., Gonzalez-Marino, G.E. Microalgae for "healthy" foods possibilities and challenges. Comprehensive Reviews in Food Science and Food Safety, 9(6), 655-675. 2010

    Chaiklahan, R., Chirasuwan, N., Bunnag, B. Stability of phycocyanin extracted from Spirulina sp.: Influence of temperature, pH and preservatives. Process Biochemistry, 47(4), 659-664. 2012

    Chaneva, G., Furnadzhieva, S., Minkova, K., Lukavsky, J. Effect of light and temperature on the cyanobacterium Arthronema africanum - a prospective phycobiliprotein-producing strain. Journal of Applied Phycology, 19(5), 537-544. 2007

    Chen, F., Zhang, Y.M. High cell density mixotrophic culture of Spirulina platensis on glucose for phycocyanin production using a fed-batch system. Enzyme and Microbial Technology, 20(3), 221-224. 1997

    Chojnacka, K., Noworyta, A. Evaluation of Spirulina sp growth in photoautotrophic, heterotrophic and mixotrophic cultures. Enzyme and Microbial Technology, 34(5), 461-465. 2004

    Chrismadha, T., Borowitzka, M.A. Effect of cell density and irradiance on growth, proximate composition and eicosapentaenoic acid production of Phaeodactylum tricornutum grown in a tubular photobioreactor. Journal of Applied Phycology, 6(1), 67-74. 1994

    Ciferri, O., Tiboni, O. The biochemistry and industrial potential of Spirulina. Annual Review of Microbiology, 39, 503-526. 1985

    Converti, A., Lodi, A., Del Borghi, A., Solisio, C. Cultivation of Spirulina platensis in a combined airlift-tubular reactor system. Biochemical Engineering Journal, 32(1), 13-18. 2006

    Cornet, J.F., Dussap, C.G., Gros, J.B. Kinetics and energetics of photosynthetic micro-organisms in photobioreactors. in: Bioprocess and Algae Reactor Technology, Apoptosis, Vol. 59, Springer Berlin Heidelberg, pp. 153-224. 1998

    Costa, J.A.V., Linde, G.A., Atala, D.I.P., Mibielli, G.M., Kruger, R.T. Modelling of growth conditions for cyanobacterium Spirulina platensis in microcosms. World Journal of Microbiology & Biotechnology, 16(1), 15-18. 2000

    de Alava, D., de Mello, P.C., Wagener, K. The relevance of the CO2 partial pressure of sodium bicarbonate solutions for the mass cultivation of the microalga Spirulina. Journal of the Brazilian Chemical Society, 8(5), 447-450. 1997

    de Morais, M.G., Costa, J.A.V. Biofixation of carbon dioxide by Spirulina sp and Scenedesmus obliquus cultivated in a three-stage serial tubular photobioreactor. Journal of Biotechnology, 129(3), 439-445. 2007

    Demarsac, N.T. Occurrence and nature of chromatic adaptation in cyanobacteria. Journal of Bacteriology, 130(1), 82-91. 1977

    Demirbas, A. Bounding of carbon dioxide in flue gases via carbonation process. Energy Exploration & Exploitation, 22(6), 421-427. 2004

    Diamond, L.W., Akinfiev, N.N. Solubility of CO2 in water from -1.5 to 100 degrees C and from 0.1 to 100 MPa: evaluation of literature data and thermodynamic modelling. Fluid Phase Equilibria, 208(1-2), 265-290. 2003

    Diao, Y.F., Zheng, X.Y., He, B.S., Chen, C.H., Xu, X.C. Experimental study on capturing CO2 greenhouse gas by ammonia scrubbing. Energy Conversion and Management, 45(13-14), 2283-2296. 2004

    Doke, J.M. An Improved and efficient method for the extraction of phycocyanin from Spirulina sp. International Journal of Food Engineering, 1(5). 2005

    Eberly, J., Ely, R. Photosynthetic accumulation of carbon storage compounds under CO2 enrichment by the thermophilic cyanobacterium Thermosynechococcus elongatus. Journal of Industrial Microbiology & Biotechnology, 39(6), 843-850. 2012

    El-Baky, H.H.A., El Baz, F.K., El-Baroty, G.S. Characterization of nutraceutical compounds in blue green alga Spirulina maxima. Journal of Medicinal Plants Research, 2(10), 292-300. 2008

    Eriksen, N.T. Production of phycocyanin - a pigment with applications in biology, biotechnology, foods and medicine. Applied Microbiology and Biotechnology, 80(1), 1-14. 2008

    Fan, L.H., Zhang, Y.T., Zhang, L., Chen, H.L. Evaluation of a membrane-sparged helical tubular photobioreactor for carbon dioxide biofixation by Chlorella vulgaris. Journal of Membrane Science, 325(1), 336-345. 2008

    Fonseca, F., Bowsher, C.G., Stulen, I. Impact of elevated atmospheric CO2 on nitrate reductase transcription and activity in leaves and roots of Plantago major. Physiologia Plantarum, 100(4), 940-948. 1997

    Franco, T.T., Jacob-Lopes, E., Revah, S., Hernandez, S., Shirai, K. Development of operational strategies to remove carbon dioxide in photobioreactors. Chemical Engineering Journal, 153(1-3), 120-126. 2009

    Garciasanchez, M.J., Fernandez, J.A., Niell, X. Effect of inorganic carbon supply on the photosynthetic physiology of Gracilaria tenuistipitata. Planta, 194(1), 55-61. 1994

    Glazer, A.N. Light harvesting by phycobilisomes. Annual Review of Biophysics and Biophysical Chemistry, 14, 47-77. 1985

    Glazer, A.N. Phycobiliproteins - a Family of valuable, widely used fluorophores. Journal of Applied Phycology, 6(2), 105-112. 1994

    Gordillo, F.J.L., Jimenez, C., Figueroa, F.L., Niell, F.X. Effects of increased atmospheric CO2 and N supply on photosynthesis, growth and cell composition of the cyanobacterium Spirulina platensis (Arthrospira). Journal of Applied Phycology, 10(5), 461-469. 1998

    Gupta, A., Sainis, J.K. Isolation of C-phycocyanin from Synechococcus sp., (Anacystis nidulans BD1). Journal of Applied Phycology, 22(3), 231-233. 2010

    Hemlata, Fatma, T. Screening of cyanobacteria for phycobiliproteins and effect of different environmental stress on its yield. Bulletin of Environmental Contamination and Toxicology, 83(4), 509-515. 2009

    Ho, S.H., Chen, C.Y., Lee, D.J., Chang, J.S. Perspectives on microalgal CO2-emission mitigation systems - A review. Biotechnology Advances, 29(2), 189-198. 2011a

    Ho, S.H., Chen, C.Y., Lee, D.J., Chang, J.S. Perspectives on microalgal CO(2)-emission mitigation systems - A review. Biotechnology Advances, 29(2), 189-198. 2011b

    Hodaifa, G., Martinez, M.E., Sanchez, S. Influence of pH on the culture of Scenedesmus obliquus in olive-mill wastewater. Biotechnology and Bioprocess Engineering, 14(6), 854-860. 2009

    Hou, H.J.M., Mauzerall, D. Listening to PS II: Enthalpy, entropy, and volume changes. Journal of Photochemistry and Photobiology B-Biology, 104(1-2), 357-365. 2011

    Iverson, T.M. Evolution and unique bioenergetic mechanisms in oxygenic photosynthesis. Current Opinion in Chemical Biology, 10(2), 91-100. 2006

    Jacob-Lopes, E., Scoparo, C.H.G., Lacerda, L.M.C.F., Franco, T.T. Effect of light cycles (night/day) on CO2 fixation and biomass production by microalgae in photobioreactors. Chemical Engineering and Processing, 48(1), 306-310. 2009

    Jin, H.F., Lim, B.R., Lee, K. Influence of nitrate feeding on carbon dioxide fixation by microalgae. Journal of Environmental Science and Health Part a-Toxic/Hazardous Substances & Environmental Engineering, 41(12), 2813-2824. 2006

    Kaplan, A., Reinhold, L. CO2 concentrating mechanisms in photosynthetic microorganisms. Annual Review of Plant Physiology and Plant Molecular Biology, 50, 539-+. 1999

    Karkos, P.D., Leong, S.C., Karkos, C.D., Sivaji, N., Assimakopoulos, D.A.. Spirulina in clinical practice: Evidence-based human applications. Evidence-Based Complementary and Alternative Medicine, 1-4. 2011

    Karl, D., Michaels, A., Bergman, B., Capone, D., Carpenter, E., Letelier, R., Lipschultz, F., Paerl, H., Sigman, D., Stal, L. Dinitrogen fixation in the world's oceans. Biogeochemistry, 57(1), 47-+.2002

    Khalil, Z.I., Asker, M.M.S., El-Sayed, S., Kobbia, I.A. Effect of pH on growth and biochemical responses of Dunaliella bardawil and Chlorella ellipsoidea. World Journal of Microbiology & Biotechnology, 26(7), 1225-1231. 2010

    Leema, J.T.M., Kirubagaran, R., Vinithkumar, N.V., Dheenan, P.S., Karthikayulu, S. High value pigment production from Arthrospira (Spirulina) platensis cultured in seawater. Bioresource Technology, 101(23), 9221-9227. 2010

    Liao, X.X., Zhang, B.C., Wang, X.Q., Yan, H.D., Zhang, X.W. Purification of C-phycocyanin from Spirulina platensis by single-step ion-exchange chromatography. Chromatographia, 73(3-4), 291-296. 2011

    Lissi, E.A., Pizarro, M., Aspee, A., Romay, C. Kinetics of phycocyanine bilin groups destruction by peroxyl radicals. Free Radical Biology and Medicine, 28(7), 1051-1055. 2000

    Liu, L.N., Chen, X.L., Zhang, Y.Z., Zhou, B.C. Characterization, structure and function of linker polypeptides in phycobilisomes of cyanobacteria and red algae: An overview. Biochimica Et Biophysica Acta-Bioenergetics, 1708(2), 133-142. 2005

    Lonneborg, A., Lind, L.K., Kalla, S.R., Gustafsson, P., Oquist, G. Acclimation processes in the light-harvesting system of the cyanobacterium Anacystis nidulans Following a Light Shift from White to Red-Light. Plant Physiology, 78(1), 110-114. 1985

    Maeda, S., Badger, M.R., Price, G.D. Novel gene products associated with NdhD3/D4-containing NDH-1 complexes are involved in photosynthetic CO2 hydration in the cyanobacterium, Synechococcus sp PCC7942. Molecular Microbiology, 43(2), 425-435. 2002

    Marquez, F.J., Nishio, N., Nagai, S., Sasaki, K.
    Enhancement of biomass and pigment production during growth of Spirulina platensis in mixotrophic culture. Journal of Chemical Technology and Biotechnology, 62(2), 159-164. 1995

    Matondo, J.I., Peter, G., Msibi, K.M. Evaluation of the impact of climate change on hydrology and water resources in Swaziland: Part I. Physics and Chemistry of the Earth, 29(15-18), 1181-1191. 2004

    Mercado, J.M., Niell, F.X., Figueroa, F.L. Regulation of the mechanism for HCO3- use by the inorganic carbon level in Porphyra leucosticta Thur in Le Jolis (Rhodophyta). Planta, 201(3), 319-325. 1997

    Minkova, K.M., Tchernov, A.A., Tchorbadjieva, M.I., Fournadjieva, S.T., Antova, R.E., Busheva, M.C. Purification of C-phycocyanin from Spirulina (Arthrospira) fusiformis. Journal of Biotechnology, 102(1), 55-59. 2003

    Moraes, C.C., Burkert, J.F.D., Kalil, S.J. C-Phycocyanin extraction process for large-scale use. Journal of Food Biochemistry, 34, 133-148. 2010

    Morales, E., Rodriguez, M., Garcia, D., Loreto, C., Marco, E. Effect of ph and CO2 on growth, pigments and exopolysaccharides production from cianobacteria Anabaena sp PCC 7120. Interciencia, 27(7), 373-378. 2002

    Nah, W.H., Koh, I.K., Ahn, H.S., Kim, M.J., Kang, H.G., Jun, J.H., Gye, M.C. Effect of Spirulina maxima on spermatogenesis and steroidogenesis in streptozotocin-induced type I diabetic male rats. Food Chemistry, 134(1), 173-179. 2012

    Niu, H.F., Wang, G.C., Lin, X.Z., Zhou, B.C. Large-scale recovery of C-phycocyanin from Spirulina platensis using expanded bed adsorption chromatography. Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences, 850(1-2), 267-276. 2007

    Ogbonda, K.H., Aminigo, R.E., Abu, G.O. Influence of temperature and pH on biomass production and protein biosynthesis in a putative Spirulina sp. Bioresource Technology, 98(11), 2207-2211. 2007

    Oi, V.T., Glazer, A.N., Stryer, L. Fluorescent phycobiliprotein conjugates for analyses of cells and molecules. Journal of Cell Biology, 93(3), 981-986. 1982

    Oliveira, E.G., Rosa, G.S., Moraes, M.A., Pinto, L.A.A. Phycocyanin content of Spirulina platensis dried in spouted bed and thin layer. Journal of Food Process Engineering, 31(1), 34-50. 2008

    Omata, T., Price, G.D., Badger, M.R., Okamura, M., Gohta, S., Ogawa, T. Identification of an ATP-binding cassette transporter involved in bicarbonate uptake in the cyanobacterium Synechococcus sp strain PCC 7942. Proceedings of the National Academy of Sciences of the United States of America, 96(23), 13571-13576. 1999

    Padyana, A.K., Bhat, V.B., Madyastha, K.M., Rajashankar, K.R., Ramakumar, S. Crystal structure of a light-harvesting protein C-phycocyanin from Spirulina platensis. Biochemical and Biophysical Research Communications, 282(4), 893-898. 2001

    Palenik, B. Chromatic adaptation in marine Synechococcus strains. Applied and Environmental Microbiology, 67(2), 991-994. 2001

    Parker, F., Davidson, M., Freeman, K., Hair, S., Daume, S. Investigation of optimal temperature and light conditions for three benthic diatoms and their suitability to commercial scale nursery culture of abalone (Haliotis laevigata). Journal of Shellfish Research, 26(3), 751-761. 2007

    Parmar, A., Singh, N.K., Pandey, A., Gnansounou, E., Madamwar, D. Cyanobacteria and microalgae: A positive prospect for biofuels. Bioresource Technology, 102(22), 10163-10172. 2011

    Patel, A., Mishra, S., Pawar, R., Ghosh, P.K. Purification and characterization of C-Phycocyanin from cyanobacterial species of marine and freshwater habitat. Protein Expression and Purification, 40(2), 248-255. 2005

    Patel, B.N., Merrett, M.J. Regulation of carbonic-anhydrase activity, inorganic-carbon uptake and photosynthetic biomass yield in Chlamydomonas reinhardtii. Planta, 169(1), 81-86. 1986

    Patil, G., Chethana, S., Sridevi, A.S., Raghavarao, K.S.M.S. Method to obtain C-phycocyanin of high purity. Journal of Chromatography A, 1127(1-2), 76-81. 2006

    Patil, G., Raghavarao, K.S.M.S. Aqueous two phase extraction for purification of C-phycocyanin. Biochemical Engineering Journal, 34(2), 156-164. 2007

    Plaza, M.G., Pevida, C., Arenillas, A., Rubiera, F., Pis, J.J. CO2 capture by adsorption with nitrogen enriched carbons. Fuel, 86(14), 2204-2212. 2007

    Price, G.D. Inorganic carbon transporters of the cyanobacterial CO2 concentrating mechanism. Photosynthesis Research, 109(1-3), 47-57. 2011

    Price, G.D., Badger, M.R., Woodger, F.J., Long, B.M.. Advances in understanding the cyanobacterial CO2-concentrating-mechanism (CCM): functional components, Ci transporters, diversity, genetic regulation and prospects for engineering into plants. Journal of Experimental Botany, 59(7), 1441-1461. 2008

    Pulz, O., Gross, W. Valuable products from biotechnology of microalgae. Applied Microbiology and Biotechnology, 65(6), 635-648. 2004

    Qiang, H., Guterman, H., Richmond, A. Physiological characteristics of Spirulina platensis (Cyanobacteria) cultured at ultrahigh cell densities. Journal of Phycology, 32(6), 1066-1073. 1996

    Ranjitha, K., Kaushik, B.D. Purification of phycobiliproteins from Nostoc muscorum. Journal of Scientific & Industrial Research, 64(5), 372-375. 2005

    Ravelonandro, P.H., Ratianarivo, D.H., Joannis-Cassan, C., Isambert, A., Raherimandimby, M. Influence of light quality and intensity in the cultivation of Spirulina platensis from Toliara (Madagascar) in a closed system. Journal of Chemical Technology and Biotechnology, 83(6), 842-848. 2008

    Raven, J.A., Evans, M.C.W., Korb, R.E. The role of trace metals in photosynthetic electron transport in O2-evolving organisms. Photosynthesis Research, 60(2-3), 111-149. 1999

    Reddy, C.M., Bhat, V.B., Kiranmai, G., Reddy, M.N., Reddanna, P., Madyastha, K.M. Selective inhibition of cyclooxygenase-2 by C-phycocyanin, a biliprotein from Spirulina platensis. Biochemical and Biophysical Research Communications, 277(3), 599-603. 2000

    Reddy, M.C., Subliashini, J., Mahipal, S.V.K., Bhat, V.B., Reddy, P.S., Kiranmai, G., Madyastha, K.M., Reddanna, P. C-Phycocyanin, a selective cyclooxygenase-2 inhibitor, induces apoptosis in lipopolysaccharide-stimulated RAW 264.7 macrophages. Biochemical and Biophysical Research Communications, 304(2), 385-392. 2003

    Richmond, A. Handbook of microalgal culture : biotechnology and applied phycology. Blackwell Science, Oxford, OX, UK ; Ames, Iowa, USA. 2004

    Richmond, A., Grobbelaar, J.U. Factors affecting the output rate of Spirulina platensis with reference to mass cultivation. Biomass, 10(4), 253-264. 1986

    Rito-Palomares, M., Nunez, L., Amador, D. Practical application of aqueous two-phase systems for the development of a prototype process for c-phycocyanin recovery from Spirulina maxima. Journal of Chemical Technology and Biotechnology, 76(12), 1273-1280. 2001

    Romay, C., Gonzalez, R., Ledon, N., Remirez, D., Rimbau, V. C-phycocyanin: A biliprotein with antioxidant, anti-inflammatory and neuroprotective effects. Current Protein & Peptide Science, 4(3), 207-216. 2003

    Rubio, F.C., Sancho, M.E.M., Villasclaras, S.S., Perez, A.D. Influence of Ph on the kinetic and yield parameters of Scenedesmus obliquus heterotrophic growth. Process Biochemistry, 24(4), 133-136. 1989

    Salleh, S., McMinn, A. The effects of temperature on the photosynthetic parameters and recovery of two temperate benthic microalgae, Amphora Cf. Coffeaeformis and Cocconeis Cf. Sublittoralis (Bacillariophyceae). Journal of Phycology, 47(6), 1413-1424. 2011

    Sarada, R., Pillai, M.G., Ravishankar, G.A. Phycocyanin from Spirulina sp: influence of processing of biomass on phycocyanin yield, analysis of efficacy of extraction methods and stability studies on phycocyanin. Process Biochemistry, 34(8), 795-801. 1999

    Seckbach, J., Baker, F.A., Shugarma.Pm. Algae Thrive under Pure CO2. Nature, 227(5259), 744-&.1970

    Sekar, S., Chandramohan, M. Phycobiliproteins as a commodity: trends in applied research, patents and commercialization. Journal of Applied Phycology, 20(2), 113-136. 2008

    Sharma, N.K., Tiwari, S.P., Tripathi, K., Rai, A.K. Sustainability and cyanobacteria (blue-green algae): facts and challenges. Journal of Applied Phycology, 23(6), 1059-1081. 2011

    Shibata, M., Katoh, H., Sonoda, M., Ohkawa, H., Shimoyama, M., Fukuzawa, H., Kaplan, A., Ogawa, T. Genes essential to sodium-dependent bicarbonate transport in cyanobacteria - Function and phylogenetic analysis. Journal of Biological Chemistry, 277(21), 18658-18664. 2002

    Shimamatsu, H. Mass production of Spirulina, an edible microalga. Hydrobiologia, 512(1-3), 39-44. 2004

    Shiraiwa, Y., Miyachi, S. Effects of Temperature and CO2 Concentration on Induction of Carbonic-Anhydrase and Changes in Efficiency of Photosynthesis in Chlorella-Vulgaris 11h. Plant and Cell Physiology, 26(3), 543-549. 1985

    Silveira, S.T., Burkert, J.F.M., Costa, J.A.V., Burkert, C.A.V., Kalil, S.J. Optimization of phycocyanin extraction from Spirulina platensis using factorial design. Bioresource Technology, 98(8), 1629-1634. 2007

    Sloth, J.K., Wiebe, M.G., Eriksen, N.T. Accumulation of phycocyanin in heterotrophic and mixotrophic cultures of the acidophilic red alga Galdieria sulphuraria. Enzyme and Microbial Technology, 38(1-2), 168-175. 2006

    Soletto, D., Binaghi, L., Ferrari, L., Lodi, A., Carvalho, J.C.M., Zilli, M., Converti, A. Effects of carbon dioxide feeding rate and light intensity on the fed-batch pulse-feeding cultivation of Spirulina platensis in helical photobioreactor. Biochemical Engineering Journal, 39(2), 369-375. 2008

    Song, C.S. Global challenges and strategies for control, conversion and utilization of CO2 for sustainable development involving energy, catalysis, adsorption and chemical processing. Catalysis Today, 115(1-4), 2-32. 2006

    Spalding, M.H., Critchley, C., Govindjee, Orgren, W.L. Influence of Carbon dioxide concentration during Growth on fluorescence induction characteristics of the Green-Alga Chlamydomonas reinhardii. Photosynthesis Research, 5(2), 169-176. 1984

    Spolaore, P., Joannis-Cassan, C., Duran, E., Isambert, A. Commercial applications of microalgae. Journal of Bioscience and Bioengineering, 101(2), 87-96. 2006

    Stewart, D.E., Farmer, F.H. Extraction, identification, and quantitation of phycobiliprotein pigments from phototrophic plankton. Limnology and Oceanography, 29(2), 392-397. 1984

    Sun, Y.Y., Wang, C.H. The optimal growth conditions for the biomass production of Isochrysis galbana and the effects that phosphorus, Zn2+, CO2, and light intensity have on the biochemical composition of Isochrysis galbana and the activity of extracellular CA. Biotechnology and Bioprocess Engineering, 14(2), 225-231. 2009

    Sung, K.D., Lee, J.S., Shin, C.S., Park, S.C., Choi, M.J. CO2 fixation by Chlorella sp. KR-1 and its cultural characteristics. Bioresource Technology, 68(3), 269-273. 1999

    Sydney, E.B., Sturm, W., de Carvalho, J.C., Thomaz-Soccol, V., Larroche, C., Pandey, A., Soccol, C.R. Potential carbon dioxide fixation by industrially important microalgae. Bioresource Technology, 101(15), 5892-5896. 2010

    Takano, H., Arai, T., Hirano, M., Matsunaga, T. Effects of intensity and quality of light on phycocyanin production by a marine cyanobacterium Synechococcus Sp Nkbg-042902. Applied Microbiology and Biotechnology, 43(6), 1014-1018. 1995

    Tamagnini, P., Leitao, E., Oliveira, P., Ferreira, D., Pinto, F., Harris, D.J., Heidorn, T., Lindblad, P. Cyanobacterial hydrogenases: diversity, regulation and applications. Fems Microbiology Reviews, 31(6), 692-720. 2007

    Torzillo, G., Vonshak, A. Effect of light and temperature on the photosynthetic activity of the cyanobacterium Spirulina platensis. Biomass & Bioenergy, 6(5), 399-403. 1994

    Tsai, D.D.W., Ramaraj, R., Chen, P.H. Growth condition study of algae function in ecosystem for CO2 bio-fixation. Journal of Photochemistry and Photobiology B-Biology, 107, 27-34. 2012

    Tsai, Y., Sawaya, M.R., Cannon, G.C., Cai, F., Williams, E.B., Heinhorst, S., Kerfeld, C.A., Yeates, T.O. Structural analysis of CsoS1A and the protein shell of the Halothiobacillus neapolitanus carboxysome. Plos Biology, 5(6), 1345-1354. 2007

    Turner, L., Houghton, J.D., Brown, S.B. Purification and identification of apophycocyanin alpha and beta subunits from soluble protein extracts of the red alga Cyanidium caldarium. Light exposure is not a prerequisite for biosynthesis of the protein moiety of this photosynthetic accessory pigment. Planta, 201(1), 78-83. 1997

    Vernet, M., Mitchell, B.G., Holmhansen, O. Adaptation of Synechococcus insitu determined by variability in intracellular phycoerythrin-543 at a Coastal Station off the southern California coast, USA. Marine Ecology-Progress Series, 63(1), 9-16. 1990

    Vonshak, A. Recent Advances in microalgal biotechnology. Biotechnology Advances, 8(4), 709-727. 1990

    Vonshak, A., Abeliovich, A., Boussiba, S., Arad, S., Richmond, A. Production of Spirulina biomass - effects of environmental factors and population density. Biomass, 2(3), 175-185. 1982

    Walter, A., de Carvalho, J.C., Soccol, V.T., de Faria, A.B.B., Ghiggi, V., Soccol, C.R. Study of phycocyanin production from Spirulina platensis under different light spectra. Brazilian Archives of Biology and Technology, 54(4), 675-682. 2011

    Wang, B., Li, Y.Q., Wu, N., Lan, C.Q. CO2 bio-mitigation using microalgae. Applied Microbiology and Biotechnology, 79(5), 707-718. 2008

    Xu, L., Weathers, P.J., Xiong, X.R., Liu, C.Z. Microalgal bioreactors: Challenges and opportunities. Engineering in Life Sciences, 9(3), 178-189. 2009

    Yang, Y., Gao, K.S. Effects of CO2 concentrations on the freshwater microalgae, Chlamydomonas reinhardtii, Chlorella pyrenoidosa and Scenedesmus obliquus (Chlorophyta). Journal of Applied Phycology, 15(5), 379-389. 2003

    Yeates, T.O., Crowley, C.S., Tanaka, S. Bacterial microcompartment organelles: Protein shell Structure and evolution. Annual Review of Biophysics, Vol 39, 39, 185-205. 2010

    Yeates, T.O., Kerfeld, C.A., Heinhorst, S., Cannon, G.C., Shively, J.M. Protein-based organelles in bacteria: carboxysomes and related microcompartments. Nature Reviews Microbiology, 6(9), 681-691. 2008

    You, T., Barnett, S.M. Effect of light quality on production of extracellular polysaccharides and growth rate of Porphyridium cruentum. Biochemical Engineering Journal, 19(3), 251-258. 2004

    Yun, Y.S., Lee, S.B., Park, J.M., Lee, C.I., Yang, J.W. Carbon dioxide fixation by algal cultivation using wastewater nutrients. Journal of Chemical Technology and Biotechnology, 69(4), 451-455. 1997

    Yun, Y.S., Park, J.M., Yang, J.W. Enhancement of CO2 tolerance of Chlorella vulgaris by gradual increase of CO2 concentration. Biotechnology Techniques, 10(9), 713-716. 1996

    Zeng, X.H., Danquah, M.K., Zhang, S.D., Zhang, X., Wu, M.Y., Chen, X.D., Ng, I.S., Jing, K.J., Lu, Y.H. Autotrophic cultivation of Spirulina platensis for CO2 fixation and phycocyanin production. Chemical Engineering Journal, 183, 192-197. 2012

    Zhang, L.P., Happe, T., Melis, A. Biochemical and morphological characterization of sulfur-deprived and H-2-producing Chlamydomonas reinhardtii (green alga). Planta, 214(4), 552-561. 2002

    Zhu, X.G., Alba, R., de Sturler, E. A simple model of the Calvin cycle has only one physiologically feasible steady state under the same external conditions. Nonlinear Analysis-Real World Applications, 10(3), 1490-1499. 2009

    下載圖示 校內:2023-02-01公開
    校外:2023-02-01公開
    QR CODE