| 研究生: |
黃啟原 Huang, Chii-Yuan |
|---|---|
| 論文名稱: |
探討使用窄頻噪音之音聲治療對耳鳴減敏療法之影響 Investigating the Effect of Customized Narrow-band Noises on Sound Therapy in Tinnitus Retraining Therapy |
| 指導教授: |
鍾高基
Chung, Kao-Chi |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 醫學工程研究所 Institute of Biomedical Engineering |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 英文 |
| 論文頁數: | 83 |
| 中文關鍵詞: | 耳鳴減敏療法 、耳鳴 、音聲治療 、最小遮蔽值 、混合點 |
| 外文關鍵詞: | mixing point, minimal masking level, sound therapy, tinnitus retraining therapy, tinnitus |
| 相關次數: | 點閱:88 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
耳鳴在醫療領域中,是相當普遍的病症。根據先進國家之流行病學調查,耳鳴的盛行率約佔人口比例的10.1% 至14.5% 之間,且研究報告顯示耳鳴的發生與年齡老化呈正向相關。儘管歷年來已提出許多不同的治療模式,但仍缺乏定量之評估量測與普遍有效之治療方法。大約在1975年左右,以外界音源來遮蔽耳鳴的治療模式首度被實地應用於臨床之耳鳴治療,其療效根據各研究報告,約在45%至69%。在1988年左右,根據耳鳴神經生理機轉模式與聽覺中樞之可塑性理論所發展出的耳鳴減敏療法(TRT),在臨床上有相當良好的療效報告。但針對上述的兩種治療所採用之症狀緩解而非根除之治療模式、對於長期聽覺神經系統之影響以及冗長之療程,仍存在許多不確定之因素有待深入探討。
針對耳鳴病患之日益增加及缺乏量化評估方法與治療處方之問題,以目前電腦、電子科技與數位訊號處理技術之進步,應有利於發展出耳鳴之量化評估技術。因此,本研究之目的為研發出一套用來量化探討耳鳴之頻寬與強度的臨床應用系統,其特定目標為:(1)設計以個人電腦為基礎之耳鳴評估與復健平台;(2)經由量化探討耳鳴之頻寬、強度等特徵參數,來發展耳鳴之治療處方與流程;(3)比較耳鳴減敏療法中使用經由特徵參數所得之窄頻治療音源與傳統之寬頻治療音源,對於耳鳴療效之影響。本研究的假說為:應用耳鳴神經生理機轉與聽覺中樞之可塑性理論及整合數位訊號處理與電子科技,可提供臨床耳鳴較客觀量化之評估方法以期尋求更有效之治療模式。
在材料與方法上,本研究分成兩階段實驗進行,第一階段先參照臨床經驗數據與考量耳鳴之聽覺心理反應與臨床檢測步驟,應用數位訊號處理科技設計以個人電腦為基礎架構之耳鳴評估系統平台。此評估系統平台設計包含病患基本資料庫以及下列四大功能介面模組:純音聽閾值功能;固定頻段耳鳴比配功能;動態頻段耳鳴比配功能;耳鳴治療音檔產生功能介面模組。此系統可提供耳鳴頻段與音量之比配與耳鳴治療音檔之產生。然後並同時進行系統校正與初步之臨床測試。第二階進行在耳鳴減敏療法中,比較使用耳鳴特徵參數之窄頻治療音與使用傳統之寬頻治療音其療效之影響與差異。臨床實驗包括實驗組及控制組:實驗組13名耳鳴病患進行6個月之窄頻治療音減敏療法,控制組12名耳鳴病患進行6個月之寬頻治療音減敏療法。治療前、治療中、治療後之效果評估包括純音聽力檢查、耳鳴特徵參數之量測與耳鳴問卷評估(THI)得分。統計上使用混合設計二因子變異數分析(two-way ANOVA with one factor repeated measurements),分成治療因子(獨立) -實驗組及控制組,與時間因子(相依)包含四個水準-治療前、治療二個月、治療四個月及治療六個月,來比較兩組療效之差異。
本耳鳴評估系統平台的主要功能包括:純音聽閾值功能介面模組主要可提供純音聽閾值之量測,以瞭解病患之基本聽力狀況;固定頻段耳鳴比配功能介面模組可提供快速之耳鳴頻段與音量比配,以偵測病患耳鳴之大致範圍;動態頻段耳鳴比配功能介面模組可提供更精確之耳鳴頻段與音量之比配,以鎖定病患耳鳴之確實範圍;耳鳴治療音檔產生功能介面模組則可參照前三項功能介面所得之參數,進行耳鳴治療音檔之產生,以提供後續之治療使用。系統的音頻及音量校正結果顯示,其誤差量在統計上無顯著差異。本系統平台在臨床評估與施測上,呈現良好之穩定性與方便性。經完成160名耳鳴對象之初步系統臨床測試,本系統平台針對耳鳴比配成功率高達83%。在第二階段實驗之耳鳴減敏療法方面,就治療前後純音聽覺閾值之差異情形,實驗組在治療前後之250、500、1k、2k、4k及8k Hz聽覺閾值均無顯著差異;而控制組在治療前後之250、500、1k、2k、4k Hz聽覺閾值雖無顯著差異,但8k Hz聽覺閾值則呈現顯著差異。
就治療前、中、後,實驗組與控制組之耳鳴音量特徵參數值(最小遮蔽值-MML與混合點-MP)之差異情形,依照混合設計二因子變異數分析,治療因子與時間因子兩者交互作用的效果並未達顯著水準(MML: p=0.541; MP: p=0.102),對於耳鳴音量特徵參數而言,治療因子(受試者間設計)影響效果,均達顯著水準(MML: p=0.016*; MP: p=0.023*);時間因子(受試者內設計)影響效果,亦皆達顯著水準(MML: p=0.000*; MP: p=0.020*)。就治療因子之單純主要效果檢定,對MML而言,治療因子在時間因子第四個水準有顯著影響效果(p=0.007*);對MP而言,治療因子在時間因子第二個及第四個水準有顯著影響 (p=0.005*;p=0.007*)。就時間因子之單純主要效果檢定,對MML而言,時間因子在實驗組與控制組,皆呈現顯著影響 (實驗組:p=0.000*;控制組: p=0.000*);但對MP而言,時間因子僅在實驗組,呈現顯著影響效果(p=0.017*),在控制組影響效果不顯著(p=0.120)。
就治療前、中、後,實驗組與控制組之耳鳴問卷評估得分之總分差異情形,依照混合設計二因子變異數分析,治療因子與時間因子兩者交互作用的效果並未達顯著水準(p=0.7),治療因子影響效果,亦未達顯著水準(p=0.647); 時間因子影響效果,則達到顯著水準(p=0.000*)。因此,僅就時間因子之單純主要效果檢定,對耳鳴問卷評估得分之總分而言,時間因子在實驗組與控制組,皆呈現顯著影響效果(實驗組:p=0.000*;控制組:p=0.000*)。事後檢定顯示,實驗組與控制組耳鳴問卷評估得分之總分,在時間因子第一個與第三個水準間(實驗組:p=0.0007*;控制組:p=0.0001*)以及第一個與第四個水準間(實驗組:p=0.0043*;控制組:p=0.0000*),均有顯著差異。耳鳴問卷評估得分之功能子分數與情緒子分數依Scheffe多重比較檢定結果,與總分之結果一致,但災厄子分數則僅於實驗組在時間因子第一個與第三個水準間,呈現顯著差異(p=0.0269*)
本系統平台在臨床評估與施測上,呈現良好之穩定性與方便性,可針對耳鳴之主觀感受,提供較客觀且數據化之耳鳴評量模式;藉由響音心理比配步驟及量化特徵參數,發展出耳鳴之治療處方與流程並應用於耳鳴減敏療法之效果評估,在純音聽力檢查方面,實驗組在治療前後聽覺閾值均無顯著差異;而控制組治療前後聽覺閾值在8k Hz呈現顯著差異,顯示寬頻治療音對聽覺仍有潛在可能之影響。在耳鳴音量感受方面,藉由耳鳴混合點之量測顯示,兩組在治療前後,耳鳴音量感受在實驗組有顯著之改善:在耳鳴障礙程度方面,藉由耳鳴問卷評估得分顯示,兩組在治療前後之整體障礙程度,包括功能以及情緒方面,均有顯著之改善,惟災厄子分數,僅於實驗組有顯著之改善,意味著使用耳鳴特徵參數之窄頻治療音之病患在治療過程中,有較樂觀與正面之生活態度。
結論:經由耳鳴響音心理與工程科技之整合與應用,量化評估耳鳴特徵參數對於耳鳴治療之影響,相信對於目前之耳鳴醫學、聽力學、醫療診斷與復健科技研發等領域,將具有前瞻性與突破性的貢獻。
Subjective tinnitus is a very common symptom in the medical horizon. The prevalence of tinnitus in adults ranges between 10.1 % and 14.5% and evidence shows that tinnitus is positively correlated with age. Despite a variety of therapeutic modalities, quantitative measurement and consistent effective treatment remain elusive in recent years. The phenomenon that tinnitus could be masked with external sounds was initially applied in tinnitus treatment around 1975. The successful masking rate has been reported from 45 % to 69 %. Later, tinnitus retraining therapy (TRT) was introduced to facilitate the process of tinnitus habituation based on the neurophysiological model of tinnitus and neuroplasticity of auditory nerve system. But there is still uncertainty of these two sound therapies about their long-term effects on auditory system, particularly for these modalities to relieve rather than to cure tinnitus and for their lengthy courses of treatment.
This research is motivated by the increasing prevalence of tinnitus worldwide and the lack of quantitative evaluation and prescription of tinnitus treatment. With the advent of computer technology, electronics and digital signal processing, new medical techniques are likely to be developed for quantitative evaluation of tinnitus and for quantitative prescription on noise therapy. Therefore, the purpose of this research is to design and develop a clinical useful system for quantitatively investigating the frequency band and intensity of tinnitus noises. More specifically, this research is aimed to (1) design a PC-based platform for evaluation and rehabilitation on tinnitus; (2) develop a prescription program for tinnitus treatment through quantitatively investigating frequency range and intensity parameters of tinnitus characteristics; (3) comparatively evaluate the clinical efficacy of conventional wide-band noises and customized narrow-band noises on tinnitus treatment. This research is to test the hypothesis that through integrated neurophysiological mechanism of tinnitus, auditory neuroplasticity and modern digital signal processing technology, clinical tinnitus can be measured more objectively and treated more effectively.
This research is divided into two stages of experiments. Experiment stage I is to design a PC-based tinnitus evaluation system through GUI system programming, which contains a clinical database and four functional modules based on clinical procedure and psychoacoustic reaction of tinnitus. Pure tone threshold functional module is designed to generate pure tones for hearing threshold evaluation. Preset narrow-band noise functional module is designed to provide preset band noises for frequency and loudness matching. Tunable band noise functional module is designed to provide fine tuning for the preset narrow-band noise and Customized noise generator functional module is to generate the digital file of the prescribed noise for tinnitus treatment. System calibration and preliminary clinical application to tinnitus subjects are also conducted. Experiment stage II is to quantitatively investigate the effects of tinnitus parameters on tinnitus. Totally 25subjects suffering from persistent tinnitus were recruited from NCKU Hospital and randomly assigned into the exp. Group (13 subjects) who underwent TRT with sound therapy using customized narrow-band noises and the control group (12 subjects) who underwent TRT with sound therapy using conventional wide-band noises for six months. Two-way ANOVA with one factor repeated measurements is used to statistically analyze the MML and MP of tinnitus psychoacoustic parameters in loudness and THI scores of tinnitus severity from questionnaires. The treatment factor includes exp. and control groups, and the time factor includes 4 levels of before treatment, 2 months, 4 months and 6 months after treatment. The results are used to assess comparatively the clinical efficacy of two groups on tinnitus treatment.
In experiment stage I, the PC-based prototype of tinnitus evaluation and prescription system has been completely designed. In the tinnitus matching process, the frequency matching rate is 95% (152 out of 160 subjects) and the self-ranked median score is 7 (ranging from 0 to 10). The overall successful matching rate for both frequency and loudness is 83%. The results of regression analysis indicate that the MML is linear to the MP level statistically ( C.C. =0.9 and p< 0.0001). The tinnitus evaluation system is likely to be useful in the tinnitus matching procedure clinically.
The analytical results of tinnitus psychoacoustic parameters in loudness show that the experiment group has significantly lower both MML and MP dB values than the control group (MML: F=6.7, p=0.016; MP: F= 5.9, p=0.023). The time effects are significant on both MML and MP dB values (p < 0.05). The results from Sheffe’s multiple comparison of post test indicate that the MML dB values of both after four- and six-months treatments are significantly lower than that of before treatment (p < 0.05) for the experiment and control groups. The MP dB value after six-months treatment is significantly lower than that of before treatment in the experiment group, but there is no time effect on the MP value for the control group. There is no interaction between time and treatment factors (MML: F= 0.724, p = 0.541; MP: F= 2.151, p = 0.102).
The THI score of experiment group is not significantly different from that of control group (p > 0.05). The time effects are significant on the THI scores for both groups. The results from Sheffe’s multiple comparison of post test indicate that the THI scores of both after four- and six-months treatments are significantly lower than that of before treatment (p < 0.05) for the experiment and control groups. There was no interaction between time and treatment factors (F= 0.476, p = 0.7). With the help of a digital tinnitus evaluation system with well-developed matching protocol, subjective tinnitus can be more assessed objectively and quantitatively. This system is proved to be reliable and feasible in clinical use. Derived from tinnitus matching parameters in frequency and intensity, customized noise could be applied to the sound therapy for Tinnitus Retraining Therapy. Conclusively, customized narrow-band noises are more effective in lowering tinnitus loudness and may provide a viable treatment option of tinnitus.
[1] Leske M: Prevalence estimates of communicative disorders in the U.S.: Language, learning and vestibular disorders. ASHA; 23:229-237, 1981.
[2] Coles RRA: Epidemiology of tinnitus: (1) Prevalence. J Laryngol Otol; 91(Suppl.): 7-15, 1984.
[3] Drukier GS: The prevalence and characteristics of tinnitus with profound sensori-neural hearing impairment. Am Ann Deaf; 134: 260-264, 1989.
[4] Fowler EP: Head noises in normal and in disordered ears: significance, measurement, differentiation and treatment. Arch Otolaryngol; 39: 498-503, 1944.
[5] Mueller HG, Hall JW: Tinnitus and hyperacusis: In Audiologists’ desk reference. San Diego, Singular Publishing Group Inc, Vol 2, pp 595-658, 1997.
[6] Feldmann H: History of tinnitus research; in Shulman A (ed): Tinnitus Diagnosis / Treatment. Pennsylvanian, Lea & Febiger, pp 3-37, 1991.
[7] Vernon J, Schleuning A: Tinnitus: a new management. Laryngoscope; 88: 413-419, 1978.
[8] Vernon J, Johnson R, Schleuning A, Mitchell C: Masking and tinnitus. Audiol Hear Edu; 6: 5-9, 1980.
[9] Goldstein BA, Shulman A: Tinnitus masking – a longitudinal study of efficacy/diagnosis 1977-1994; in Reich GE, Vernon JA (ed): Proceedings of the 5th International Tinnitus Seminar, Portland, American tinnitus association, pp 315-321, 1996.
[10] Hazell JPW, Wood SM, Cooper HR, Stephens SDG, Corcoran AL, Coles RRA, Baskill JL and Sheldrake JB: A clinical study of tinnitus maskers. Brit J Audiol; 19: 65-146, 1985.
[11] Jastreboff PJ, Brennan JF, Coleman JK, Sasaki CT: Phantom auditory sensation in rats: an animal model for tinnitus. Behavioral Neuroscience; 102:811-822, 1988.
[12] Jastreboff PJ, Brennan JF, Sasaki CT: An animal model for tinnitus. Laryngoscope; 98:280-286, 1988.
[13] Mattox DE, Jastreboff PJ, Grag W: Tinnitus habituation therapy: the University of Maryland Tinnitus and Hyperacusis Center Experience. Int Tinnitus J; 3:31-32, 1997.
[14] Jastreboff PJ, Jastreboff MM: Tinnitus retaining therapy as a method for treatment of tinnitus and hyperacusis patients. J Am Acad Audiol; 11: 162-77, 2000.
[15] Spaulding AJ: Tinnitus, with a plea for its more accurate musical notation. Ann Oto; 32: 263-272, 1903.
[16] Feldmann H: Masking of tinnitus – histological remarks; in Feldmann H (ed): Proceedings of the 3rd international tinnitus seminar, Karlsruhe, Harsch Verlag, pp 210-213, 1987.
[17] Coles RRA, David AC, Haggard MP: Epidemiology of tinnitus; in tinnitus CIBA foundation symposium 85, London, Pitman medical; pp 16-34, 1981.
[18] Davis A, Rafaie EA: Epidemiology of tinnitus; in Tyler R (ed): Tinnitus Handbook, 1st ed. United States, Sigular Publishing Group, pp 1-23, 2000.
[19] Holgers K-M, Barrenas M-L: The pathophysiology and assessment of tinnitus; in Luxon LM (ed): Textbook of Audiological Medicine, 1st ed, London, Martin Dunitz, Taylor & Francis Group, pp 555-569, 2003.
[20] Seligmann H, Podoshin L, Ben-David J, Fradis M, Goldsher M: Drug-induced tinnitus and other hearing disorder. Br J Audiol;25:77-83, 1991.
[21] Erlandsson S, Hallberg L, Axelsson A: Psychological and audiological correlates of perceived tinnitus severity. Audiology; 31: 168-179, 1992.
[22] Dauman R, Tyler RS: Some considerations on the classification of tinnitus; in Aran JM, Dauman R (ed): Proceedings of the 4th International Tinnitus Seminar, Bordeaux, France, pp 225-229, 1992.
[23] Tyler RS: Tinnitus disability and handicap questionnaires. Seminar Hear; 14:377-384, 1993.
[24] Coles RRA: Tinnitus; in Kerr AG (ed): Scott-Brown’s Otolaryngology, 6th ed. Bath, Bath Press, vol 2, pp 2/18/1-2/18/34, 1997.
[25] Ikner CL, Hassen AH: The effect of tinnitus on ABR latencies. Ear Hear; 11: 16-20, 1990.
[26] Attias J, Urbach D, Gold S, Shahar A: Tinitus with normal hearing sensitivity: extended high-frequency audiometry and auditory-nerve brain-stem evoked responses. Audiology; 29:36-45, 1990.
[27] Rosenhall U, Axelsson A: Auditory brainstem response latencies in patients with tinnitus. Scand Audiol; 24: 97-100, 1995.
[28] Siomi Y, Tsuji J, Naito Y, Fujiki N, Yamamoto N: characteristics of DPOAE audiogram in tinnitus patients. Hear Res; 108:83-88, 1997.
[29] Bartnik G, Rogowski M, Fabijanska A, Raj-Koziak D, Borawska B: DPOAE assessment of cochlear function in tinnitus patients with normal hearing; in Patuzzi R (ed): Proceedings of the 6th International Tinnitus Seminar, Fremantle, Western Australia, pp 45-47, 1999.
[30] Newman CW, Jacobson GP, Spitzer JB: Development of the tinnitus handicap inventory. Arch Otolaryngol Head Neck Surg; 122: 143-148, 1996.
[31] Berry JA, Gold SL, Frederick EA, Gray WC, Staecker H: Patient-based outcomes in patients with primary tinnitus undergoing tinnitus retraining therapy. Arch Otolaryngol Head Neck Surg; 128: 1153-1157, 2002.
[32] Vernon J: Tinnitus. Hear Aid J; 13:82-83, 1975.
[33] Sheldrake JB, Jastreboff PJ, Hazell JWP: Perspectives for total elimination of tinnitus perception; in Vernon JA, Reich GE (ed): Proceedings of the 5th International Tinnitus Seminar, Portland, American tinnitus association, pp 531-536, 1996.
[34] Kellerhals B: The Swiss concept I: Tinnitus rehabilitation by retraining; in Patuzzi R (ed): Proceedings of the 6th International Tinnitus Seminar, Fremantle, Western Australia, pp 286-287, 1999.
[35] Heitzmann T, Rubio L, Cardenas MR, Zofio E: The importance of continuity in TRT patients: Results at 18 months; in Patuzzi R (ed): Proceedings of the 6th international tinnitus seminar, Fremantle, western Australia, pp 509-510, 1999.
[36] Shiavi R: Fourier analysis: in Introduction to Applied Statistical Signal Analysis, 2nd ed, San Diego, Academic Press, pp. 54-103, 1999.
[37] Oppenheim AV, Schafer RW: Discrete-time Signal Processing, 1st ed. United States, Prentice-Hall Inc, pp 403-490, 1989.
[38] Jastreboff PJ, Grag WC, Gold SL: Neurophysiological approach to tinnitus patients. Amer J Otol;17: 236-240, 1996.
[39] Sheldrake JB, Hazell JWP, Graham RL: Results of tinnitus retraining therapy. Proc. Sixth International Tinnitus Seminar, The Tinnitus and Hyperacusis Center, London, pp 292-296, 1999.
[40] Gerken GM, Hesse PS, Wiorkowski JJ: Auditory evoked responses in control subjects and in patients with problem-tinnitus. Hear Res;157: 52-64, 2001.
[41] Attias J, Furman V, Shemesh Z, Bresloff I: Impaired brain processing in noise-induced tinnitus patients as measured by auditory and visual event-related potentials. Ear Hear; 17:327-333, 1996.
[42] Mirz F, Pederson CB, Ishizu K, Johannsen P, Ovesen T, Stodkilde-Jorgensen H, Gjedde A: Positron emission tomography of cortical centers of tinnitus. Hear Res; 134: 133-144, 1999.
[43] Bhattacharyya N: Outcomes research in otology. ORL J Otorhinolaryngol Relat Spec; 66:214-220, 2004.
[44] Shulmam A: Tinnitus Diagnosis / Treatment, ed 1. Pennsylvanian, Lea & Febiger, pp 237-247, 1991.
[45] Searchfield GD, Warr AA, Kuklinski JV, Purdy SC: Digital instruments for tinnitus: mixing point identification and threshold-adjusted noise. Proc Seventh International Tinnitus Seminar, Fremantle, Australia, pp191-194, 2002.
[46] Anderson G: Tinnitus loudness matchings in relation to annoyance and grading of severity. Auris Nasus Larynx; 30: 129-133, 2003.
[47] Newman CW, Wharton JA, Shivapuja BG, Jacobson GP: Relationships among psychoacoustic judgments, speech understanding ability and self-perceived handicap in tinnitus subjects. Audioloy; 33: 47-60, 1994.
[48] Henry JA, Meikle MB: Psychoacoustic measures of tinnitus. Journal of the American Academy of Audiology; 11: 138-155, 2000.