| 研究生: |
張栢豪 Chang, Bo-Hau |
|---|---|
| 論文名稱: |
應用分佈質量轉移矩陣法於攜帶各種集中元素之Timoshenko樑的自由振動分析 Free vibration analysis of Timoshenko beam carrying various concentrated element using continuous-mass TMM |
| 指導教授: |
吳重雄
Wu, Jong-Shyong |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 系統及船舶機電工程學系 Department of Systems and Naval Mechatronic Engineering |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 79 |
| 中文關鍵詞: | Timoshenko樑 、分佈質量轉移矩陣法 、集中元素 、自由振動 |
| 外文關鍵詞: | concentrated elements, Timoshenko beam, continuous-mass transfer matrix method, free vibration |
| 相關次數: | 點閱:118 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文目的在於使用延伸的分佈質量轉移矩陣法(CTMM),來求解一均勻或不均勻Timoshenko樑附帶多個集中質量、集中質量慣性矩、線性彈簧及扭轉彈簧時,在各種邊界條件下的自然頻率與振態。為達此目的,吾人將一連續的Timoshenko樑細分為數根段樑,將每組相鄰的兩根段樑以一節點連接之,並將上述各種集中元素附著於各個節點上。因此,吾人只須調整各根段樑的剖面積與長度,以及附加於各節點上的各種集中元素之大小,即可輕易建立一附帶多個集中質量、集中質量慣性矩、線性彈簧及扭轉彈簧之均勻或不均勻Timoshenko樑的數學模型。根據此數學模型,吾人便可進行任意邊界條件下攜帶任意集中元素之Timoshenko樑的自由振動分析。吾人可令左右兩端節點處之線性彈簧常數與扭轉彈簧常數皆為無限大而得兩端固定樑,令左右兩端節點處之線性彈簧常數與扭轉彈簧常數皆為0而得兩端自由樑,令一端之線性彈簧常數與扭轉彈簧常數皆為無限大而另一端之線性彈簧常數與扭轉彈簧常數皆為0而得一懸臂樑等等。另外,吾人針對均勻或不均勻樑附帶多種集中元素的情況下,分別根據Euler樑理論及Timoshenko樑理論來求其自然頻率與振態,並探討旋轉慣性與剪切變形效應的影響。
The purpose of this thesis is to extend the continuous-mass transfer matrix method (CTMM) to determine the natural frequencies and associated mode shapes of the uniform or non-uniform Timoshenko beams carrying any number of point masses, rotary inertias, translational springs and rotational springs with various classical or non-classical boundary conditions. To this end, a continuous Timoshenko beam is subdivided into several beam segments with any two adjacent beam segments connected by a node, and then each kind of concentrated elements is attached to each node. So, it is easy to establish the mathematical model of a uniform or non-uniform Timoshenko beam with various boundary conditions by only adjusting the cross-sectional area and length of each beam segment, and the associated physical quantity for each kind of concentrated elements. Thus, for a free-free beam, one requires only to set each of the stiffness constant of translational springs and rotational springs at its two ends to be equal to zero. In addition, the shear deformation and rotary inertia effects, the natural frequencies and associated mode shapes of the uniform or non-uniform beam carrying various concentrated elements are determined with Euler beam theory and Timoshenko beam theory.
參考文獻
1. B. Posiadala, ‘Free vibration of uniform Timoshenko beams with attachments’, Journal of Sound and vibration, 204(2), 359-369, 1997.
2. C. N. Bapat, C. Bapat, ‘Natural frequencies of a beam with non-classical boundary conditions and concentrated masses.’ Journal of sound and vibration, 112(1), 177-182, 1987.
3. H. Abramovich and I. Elishakoff, ‘Influence of shear deformation and rotary inertia on vibration frequencies via Love’s equation.’ Journal of Sound and Vibration, 137, 516-522, 1990.
4. H. Abramovich and O. Hamburger, ‘Vibration of a cantilever beam with a tip mass’ Journal of Sound and Vibration, 148, 162-170, 1991.
5. H. Abramovich and O. Hamburger, ‘Vibration of a uniform cantilever Timoshenko beam with translational and rotational springs and with a tip mass’ Journal of Sound and Vibration, 154(1), 67-80, 1992.
6. J. C. Bruch and T. D. Mitchell, ‘Vibrations of mass-loaded clamped-free Timoshenko beam.’ Journal of sound and vibration, 114(2), 342-345, 1987.
7. Jong-Shyong Wu and Der-Wei Chen, ‘Free vibration analysis of a Timoshenko beam carrying multiple spring-mass system by using the numerical assembly.’ International Journal for Numerical Methods in Engineering, 50, 1039-1058, 2001.
8. Jong-Shyong Wu and Chang-Guey Huang, ‘Free and forced vibrations of Timoshenko beam with any number of translational and rotational springs and lumped masses.’ Communications in numerical methods in engineering, 11, 743-756, 1995.
9. Jong-Shyong Wu and Y. J. Yang, ‘Free vibration analysis of beams carrying concentrated elements using CTMM and LTMM’, Journal of Taiwan Socirty of Naval Architects and Marine Engineers, 24(4), 203-214, 2005.
10. L. Meirovitch, Analytical Methods in vibrations, Macmillan Company, London, U.K., 1967.
11. M. J. Maurizi, R. E. Rossi, P. M. Belles, ‘Free vibrations of uniform Timoshenko beams with ends elastically restrained against rotation and translation.’ Journal of Sound of Vibration, 141, 359-362, 1990.
12. R. E. Rossi ,P. A. A. Laura and R. H. Gutierrez, ‘A note on transverse vibrations of a Timoshenko beam of non-uniform thickness clamped at one end and carrying a concentrated mass at the other,’ Journal of Sound and Vibration, 143(3), 491-502, 1990.
13. R. E. Rossi, R.H. Gutierrez and P. A. A. Laura, ‘Transverse vibration of a Timoshenko beam of nonuniform cross section elastically restrained at one end and carrying a concentrated mass at the other,’ Acoustical Society of America, 89(5), 2456-2458, 1991.
14. R. H. Gutierrez, ‘Free vibration of a Timoshenko beam of non-uniform cross-section elastically restrained against translation and rotation at both end,’ Applied Acoustics, 33, 131-152, 1991.
15. S. H. Farghaly, ‘Vibration and stability analysis of Timoshenko beams with discontinuities in cross-section’ Journal of sound and vibration, 174(5), 591-605, 1994.
16. TC Huang, ‘The effect of rotatory and of shear deformation on the frequency and normal mode equation of uniform beams with simple end conditions.’ Transactions of the ASME, Journal of Applied Mechanics, 28, 579-584, 1961.
17. X. Tong and B. Tabarrok and K. Y. Yeh, ‘Vibration analysis of Timoshenko beams with non-homogeneity and varying cross-section’, Journal of sound and vibration, 186(5), 821-835, 1995.
18. 陳德煒, “應用數值組合法求解附帶各類集中元素的均勻與不均勻樑之自然頻率及振態的正解”, 國立成功大學造船及船舶機械工程學系博士論文, 民國89年。
19. 楊育任, “攜帶多種集中元素之樑自由振動的統一分析法”, 國立成功大學系統及船舶機電工程學系碩士論文, 民國94年。