| 研究生: |
賴嘉華 Lai, Jia-Hua |
|---|---|
| 論文名稱: |
低電壓操作之軟性CMOS在不同撓曲條件下之研究 The study of flexibly low-voltage-drived CMOS under various bending conditions |
| 指導教授: |
周維揚
Chou, Wei-Yang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Photonics |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 166 |
| 中文關鍵詞: | PI軟性基板 、低電壓 、五環素 、十三烷基駢苯衍生物 、有機互補式金屬氧化半導體 |
| 外文關鍵詞: | flexible PI substrate, low-driving voltage, pentacene, PTCDI-C13, organic complementary metal-oxide-semiconductor |
| 相關次數: | 點閱:82 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究使用了兩種半導體:五環素(Pentacene)與本實驗室自行合成的十三烷基駢苯衍生物
(N,N’-ditridecylperylene-3,4,9,10-tetracarboxylic diimide , PTCDI-C13)。利用此兩種n / p型半導體材料在Polyimide (PI)軟性基板上製作
有機互補式金屬氧化半導體(Organic Complementary
Metal-Oxide-Semiconductor , O-CMOS),並分析在不同撓曲條件下之CMOS電特性。
第一部份,找出最佳化High-k製程參數以利降低操作電壓。利用PI軟性基板蒸鍍鋁金屬,並對鋁金屬做氧電漿處理,在鋁金屬上形成High-k介電質,利用電容值變化來探討High-k介電質之氧電漿參數的影響而找到最佳條件。
第二部份,對Pentacene表面做氧電漿處理,加上使用複合電極時,擁有最接近理想值(Vs = 1 V)的切換電壓。此外,從表面能、表面電位和EFM的分析中得知,因為經過表面處理後,載子更容易注入到半導體,而將p-type電特性大幅度的提升。
第三部份,探討撓曲狀態下的電特性變化。在曲率半徑為±10 mm、±40 mm之垂直通道、平行通道的條件下,藉由CMOS轉換曲線變化探討元件撓曲10000次的穩定性測試。 研究結果得知: 本實驗室之PI軟性CMOS經過10000次撓曲之後,對元件的電特性表現,並無太大的偏移量。而增益曲線的最高點,卻有小幅度的上升。
Two organic semiconductors, pentacene and N,N’-ditridecylperylene-3,4,9,10-tetracarboxylic diimide (PTCDI-C13H27) was used to fabricated organic complementary metal-oxide-semiconductor O-CMOS) on a polyimide (PI) flexible substrate. To analyze CMOS electrical characteristics under various bending conditions, the first part of this study emphasizes on the optimization of process parameters of high-k dielectrics to reduce the operating voltage. The aluminum metal is deposited on the PI flexible substrate and treated by oxygen plasma to form a high-k dielectric Al2O3 film on the aluminum metal. The measurement of capacitance is performed to explore the effect of dielectric constant enhanced by oxygen plasma parameters to find the best conditions.
Before forming the top electrodes of O-CMOS, the pentacene surface is processed with oxygen plasma that would make the switching voltage (Vs) approaching to the ideal value. Furthermore, from the analyses of surface energy, surface potential obtained by using electric force microscopy (EFM), we find that the carriers are more easily injected into the pentacene semiconductor after surface treatment, and the electrical characteristics of pentacene-based field-effect transistor are also greatly upgraded.
Finally, we try to investigate the changes of electrical properties of O-CMOS under various flexible states and bending times. When the bending direction is parallel and orthogonal to the channel of O-CMOS under radius of curvature of ±10 mm and ±40 mm, the bends of 10,000 times is performed on O-CMOS devices to investigate the changes of transformation curves. The experimental results show that after bending these soft O-CMOS devices, the Vs is closer to the value of VDD/2. Moreover, a few increases are obtained in gain curves.
[1] E. Fortunato, “Oxide Semiconductor Thin-Film Transistors: A Review
of Recent Advances”, Adv. Mater., 24, 2945, 2012.
[2] N. Zheludev, “The life and times of the LED — a 100-year history”, Nature Photonics, 1, 189, 2007.
[3] J. Shewchun, “The operation of the semiconductor-insulator-semiconductor solar cell: Experiment, J. Appl. Phys., 50, 4, 1979.
[4] A.V. Shah, “Thin‐film silicon solar cell technology”, Prog. Photovolt: Res. Appl., 12, 113, 2004.
[5] C.D. Dimitrakopoulos, D.J. Mascaro, “Organic thin-film transistors: a review of recent advances”, IBM J. RES. & DEV. VOL. 45 NO. 1 JANUARY 2001
[6] W.Y. Chou, B.L. Yeh, H.L. Cheng, “Organic complementary inverters with polyimide films as the surface modification of dielectrics”, Organic Electronics, 10, 1001, 2009.
[7] C. Lu, Z. Ji, G. Xu, “Progress in flexible organic thin-film transistors and integrated circuits”, Sci. Bull., 61, 1081, 2016.
[8] Y. Fujisaki, “Transparent Nanopaper-Based Flexible Organic Thin-Film Transistor Array”, Adv. Funct. Mater., 24, 1657, 2014.
[9] S. Chung, S.O. Kim, S. K. Kwon, “All-Inkjet-Printed Organic Thin-Film Transistor Inverter on Flexible Plastic Substrate”, IEEE Electron Device Lett., 32, 8, 2011.
[10] V. Coropceanu, “Charge Transport in Organic Semiconductors”, Chem. Rev., 107, 926, 2007.
[11] J. Liu, X. Gao, J.L. Xu, A. Ruotolo, S.D. Wang, “Flexible Low-Power Organic Complementary Inverter Based on Low- k”, IEEE Electron Device Lett., 38, 10, 2017.
[12] 胡振國、廖建舜,“半導體元件電晶體的演進”,科學發展,540期,2017。
[13] D.F. Barbe, C.R. Westgate, “Surface state parameters of metal-free phthalocyanine single crystals”, J. Phys. Chem. Solids, 31, 2679, 1970.
[14] H. Koezuka, A. Tsumura, T. Ando, Synth, “Field-effect transistor with polythiophene thin film”, Synth. Met., 18, 699, 1987.
[15] G. Horowitz, “Organic field-effect transistors”, Adv. Mater., 10, 365, 1998.
[16] Q.J. Sun, J. Peng, “Low-power organic field-effect transistors and complementary inverter based on low-temperature processed Al2O3 dielectric”, Organic Electronics, 34, 118, 2016.
[17] A. Chasin, V. Volskiy, M. Libois, K. Myny, M. Nag, M. Rockele,
G.A.E. Vandenbosch, J. Genoe, G. Gielen, P. Heremans, “An integrated a-IGZOUHF energy harvester for passive RFID tags”, IEEE Trans. Electr. Dev. 61, 3289, 2014.
[18] N.K. Elumalai, A. Uddin, “Open circuit voltage of organic solar cells: an in-depth review”, Energy Environ. Sci., 9, 391, 2016.
[19] N.K. Elumalai, M.A. Mahmud, D. Wang, A. Uddin, “Perovskite solar cells: progress and advancements”, Energies, 9, 861, 2016.
[20] W. Nie, H. Tsai, R. Asadpour, J.C. Blancon, A.J. Neukirch, G. Gupta, J.J. Crochet, M. Chhowalla, S. Tretiak, M.A. Alam, H.L. Wang, A.D. Mohite, “High-efficiency solution-processed perovskite solar cells with millimeter-scale grains”, Science, 347, 522, 2015.
[21] U. Zschieschang, V.P. Bader, “Below-one-volt organic thin-film transistors with large on/off current ratios”, Organic Electronics, 49, 179, 2017.
[22] C. Liu, E.F. Chor, L.S. Tan, “Investigations of HfO2∕AlGaN∕GaN metal-oxide-semiconductor high electron mobility transistors”, Appl. Phys. Lett., 88, 173504, 2006.
[23] X.H. Zhang, W.J. P. Jr., S. Choi, B. Kippelen, “Low-voltage flexible organic complementary inverters with high noise margin and high dc gain”, Appl. Phys. Lett., 94, 043312, 2009.
[24] X.H. Zhang, S.P. Tiwari, B. Kippelen, “Pentacene organic field-effect transistors with polymeric dielectric interfaces: Performance and stability”, Org. Electron., 10, 1133, 2009.
[25] R. Chen, W. Zhou, M. Zhang, H.S. Kwok, “High performance self-aligned top-gate ZnO thin film transistors using sputtered Al2O3 gate dielectric”, Thin Solid Films, 520, 6681, 2012.
[26] C.R. Newman, C.D. Frisbie, “Introduction to Organic Thin Film Transistors and Design of n-Channel Organic Semiconductors”, Chem. Mater., 16, 4436, 2004.
[27] S. Tatemichi, M. Ichikawa, T. Koyama, “High mobility n-type thin-film transistors based on N, N’ ditridecyl perylene diimide
with thermal treatments”, Appl. Phys. Lett., 89, 112108, 2006.
[28] 施敏原著,黃調元譯, “半導體元件物理與製作技術(第二版)”,國立交通大學出版社,第六章,p311~p312。
[29] G. Horowitz, “Organic Field-Effect Transistors”, Adv. Mater.
1998,10,No.5.
[30] M. Kitamura, “Low-voltage-operating complementary inverters with C60 and pentacene transistors on glass substrates”, Appl. Phys. Lett., 91, 53505, 2007.
[31] S. Tatemichi, M. Ichikawa, “Low-voltage, high-gain, and high-mobility organic complementary inverters based on N,N’-ditridecyl-3,4,9,10-perylenetetracarboxylic diimide and pentacene”, phys. stat. sol. (RRL) 2, 2, 47, 2008.
[32] Dietrich R.T.Zahn,Thorsten U.Kampen,HenryMéndez, "Transport gap of organic semiconductors in organic modified Schottky contacts", Applied Surface Science, 212–213 , 423–427, 2003.
[33] 林益生, “以烷基駢苯衍生物作為主動層之有機薄膜電晶體”, 國立成功大學碩士論文, 2008.
[34] 聚醯亞胺(Polyimide,縮寫PI)
http://www.film-top1.com/product-info.asp?id=659
[35] J. R. Ferraro, “Introductory raman spectroscopy”, Academic Press, 2nd, 15, 2002.
[36] 陳進福, “低電壓操作有機互補式反相器之電特性研究”, 國立成功大學碩士論文, 2018.
[37] 許庭嫚, “低電壓操作有機場效電晶體之電特性研究”, 國立成功大學碩士論文, 2017.