簡易檢索 / 詳目顯示

研究生: 賴嘉華
Lai, Jia-Hua
論文名稱: 低電壓操作之軟性CMOS在不同撓曲條件下之研究
The study of flexibly low-voltage-drived CMOS under various bending conditions
指導教授: 周維揚
Chou, Wei-Yang
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 166
中文關鍵詞: PI軟性基板低電壓五環素十三烷基駢苯衍生物有機互補式金屬氧化半導體
外文關鍵詞: flexible PI substrate, low-driving voltage, pentacene, PTCDI-C13, organic complementary metal-oxide-semiconductor
相關次數: 點閱:82下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究使用了兩種半導體:五環素(Pentacene)與本實驗室自行合成的十三烷基駢苯衍生物
    (N,N’-ditridecylperylene-3,4,9,10-tetracarboxylic diimide , PTCDI-C13)。利用此兩種n / p型半導體材料在Polyimide (PI)軟性基板上製作
    有機互補式金屬氧化半導體(Organic Complementary
    Metal-Oxide-Semiconductor , O-CMOS),並分析在不同撓曲條件下之CMOS電特性。
    第一部份,找出最佳化High-k製程參數以利降低操作電壓。利用PI軟性基板蒸鍍鋁金屬,並對鋁金屬做氧電漿處理,在鋁金屬上形成High-k介電質,利用電容值變化來探討High-k介電質之氧電漿參數的影響而找到最佳條件。
    第二部份,對Pentacene表面做氧電漿處理,加上使用複合電極時,擁有最接近理想值(Vs = 1 V)的切換電壓。此外,從表面能、表面電位和EFM的分析中得知,因為經過表面處理後,載子更容易注入到半導體,而將p-type電特性大幅度的提升。
    第三部份,探討撓曲狀態下的電特性變化。在曲率半徑為±10 mm、±40 mm之垂直通道、平行通道的條件下,藉由CMOS轉換曲線變化探討元件撓曲10000次的穩定性測試。 研究結果得知: 本實驗室之PI軟性CMOS經過10000次撓曲之後,對元件的電特性表現,並無太大的偏移量。而增益曲線的最高點,卻有小幅度的上升。

    Two organic semiconductors, pentacene and N,N’-ditridecylperylene-3,4,9,10-tetracarboxylic diimide (PTCDI-C13H27) was used to fabricated organic complementary metal-oxide-semiconductor O-CMOS) on a polyimide (PI) flexible substrate. To analyze CMOS electrical characteristics under various bending conditions, the first part of this study emphasizes on the optimization of process parameters of high-k dielectrics to reduce the operating voltage. The aluminum metal is deposited on the PI flexible substrate and treated by oxygen plasma to form a high-k dielectric Al2O3 film on the aluminum metal. The measurement of capacitance is performed to explore the effect of dielectric constant enhanced by oxygen plasma parameters to find the best conditions.
    Before forming the top electrodes of O-CMOS, the pentacene surface is processed with oxygen plasma that would make the switching voltage (Vs) approaching to the ideal value. Furthermore, from the analyses of surface energy, surface potential obtained by using electric force microscopy (EFM), we find that the carriers are more easily injected into the pentacene semiconductor after surface treatment, and the electrical characteristics of pentacene-based field-effect transistor are also greatly upgraded.
    Finally, we try to investigate the changes of electrical properties of O-CMOS under various flexible states and bending times. When the bending direction is parallel and orthogonal to the channel of O-CMOS under radius of curvature of ±10 mm and ±40 mm, the bends of 10,000 times is performed on O-CMOS devices to investigate the changes of transformation curves. The experimental results show that after bending these soft O-CMOS devices, the Vs is closer to the value of VDD/2. Moreover, a few increases are obtained in gain curves.

    中文摘要 1 Extended Abstract 3 誌謝 11 目錄 12 表目錄 17 圖目錄 18 第一章 簡介 27 1.1 有機半導體簡介 27 1.2 文獻回顧 29 1.3 研究動機與目的 31 第二章 有機薄膜電晶體概論 33 2.1 有機薄膜電晶體的基本結構與操作原理 33 2.1.1基本結構 33 2.1.2操作原理 33 2.2 有機半導體的傳輸機制 35 2.3 有機薄膜電晶體與互補式反相器的基本公式與特性 36 2.3.1 線性區、飽和區汲極電流和載子遷移率(mobility, μ)[20] 37 2.3.2 臨界電壓(threshold voltage, Vt) 38 2.3.3 次臨界擺幅(subthreshold swing , S.S.) 38 2.3.4 電流開關比(on/off ratio) 39 2.3.5 切換電壓(switching voltage, Vs) 39 2.3.6 訊號增益(Gain) 40 第三章 實驗方法與分析儀器介紹 49 3.1實驗儀器 49 3.1.1 精密四位電子天平 49 3.1.2 加熱磁石攪拌器 49 3.1.3 物理氣相沉積儀 49 3.1.4 半導體分析儀 49 3.1.5 電容分析儀 50 3.1.6 撓曲平台 50 3.1.7 吸收光譜 50 3.1.8 拉曼儀 51 3.2實驗材料 51 3.2.1 有機高分子修飾層材料 52 3.2.2 有機半導體材料 53 3.3 有機薄膜電晶體製程 55 3.3.1 清洗基板 55 3.3.2 蒸鍍閘極 55 3.3.3 高介電係數金屬氧化層 56 3.3.4 旋轉塗佈有機高分子介電修飾層 56 3.3.5 蒸鍍有機半導體層 56 3.3.6 蒸鍍複合電極 57 3.4 分析手法 58 3.4.1 轉換特性曲線(ID-VGS) 58 3.4.2 輸出特性曲線(ID-VDS) 58 3.4.3 CMOS電壓轉換曲線(Vin-Vout) 59 3.4.4 電容特性曲線(Cp-V) 59 3.4.5 拉曼曲線 59 第四章 實驗結果與討論 65 4.1 前言 65 4.2 High-k dielectric之參數選擇 66 4.3 單一和複合電極之互補式反相器的電特性影響 66 4.3.1 單一電極之電特性分析 67 4.3.2 複合電極之電特性分析 68 4.4優化p-type之分析 70 4.4.1 表面能分析 70 4.4.2 表面電位分析 70 4.4.3 EFM分析 71 4.5不同曲率條件下對互補式反相器之電特性影響 71 4.5.1 p-type元件電性分析 71 4.5.2 n-type元件電性分析 72 4.5.3 互補式反相器之元件特性分析 72 4.5.4 撓曲100次的過程中之元件特性分析 73 4.6 Bending times 之吸收光譜分析 74 4.6.1 前言 74 4.6.2 Pentacene 74 4.6.3 PTCDI 75 4.7 Bending times 之電容分析 75 4.7.1 前言 75 4.7.2 MIM 75 4.7.3 MISM 76 4.8 Bending times 之mobility 76 4.8.1 P-type 76 4.8.2 N-type 76 4.9 Bending times 之拉曼分析 77 4.10 Bending times 之XRD分析 77 4.11 穩定性分析 78 第五章 結論 160 5.1 研究結論 160 5.2 未來工作 162 參考文獻 163

    [1] E. Fortunato, “Oxide Semiconductor Thin-Film Transistors: A Review
    of Recent Advances”, Adv. Mater., 24, 2945, 2012.

    [2] N. Zheludev, “The life and times of the LED — a 100-year history”, Nature Photonics, 1, 189, 2007.

    [3] J. Shewchun, “The operation of the semiconductor-insulator-semiconductor solar cell: Experiment, J. Appl. Phys., 50, 4, 1979.

    [4] A.V. Shah, “Thin‐film silicon solar cell technology”, Prog. Photovolt: Res. Appl., 12, 113, 2004.

    [5] C.D. Dimitrakopoulos, D.J. Mascaro, “Organic thin-film transistors: a review of recent advances”, IBM J. RES. & DEV. VOL. 45 NO. 1 JANUARY 2001

    [6] W.Y. Chou, B.L. Yeh, H.L. Cheng, “Organic complementary inverters with polyimide films as the surface modification of dielectrics”, Organic Electronics, 10, 1001, 2009.

    [7] C. Lu, Z. Ji, G. Xu, “Progress in flexible organic thin-film transistors and integrated circuits”, Sci. Bull., 61, 1081, 2016.

    [8] Y. Fujisaki, “Transparent Nanopaper-Based Flexible Organic Thin-Film Transistor Array”, Adv. Funct. Mater., 24, 1657, 2014.

    [9] S. Chung, S.O. Kim, S. K. Kwon, “All-Inkjet-Printed Organic Thin-Film Transistor Inverter on Flexible Plastic Substrate”, IEEE Electron Device Lett., 32, 8, 2011.

    [10] V. Coropceanu, “Charge Transport in Organic Semiconductors”, Chem. Rev., 107, 926, 2007.

    [11] J. Liu, X. Gao, J.L. Xu, A. Ruotolo, S.D. Wang, “Flexible Low-Power Organic Complementary Inverter Based on Low- k”, IEEE Electron Device Lett., 38, 10, 2017.

    [12] 胡振國、廖建舜,“半導體元件電晶體的演進”,科學發展,540期,2017。

    [13] D.F. Barbe, C.R. Westgate, “Surface state parameters of metal-free phthalocyanine single crystals”, J. Phys. Chem. Solids, 31, 2679, 1970.

    [14] H. Koezuka, A. Tsumura, T. Ando, Synth, “Field-effect transistor with polythiophene thin film”, Synth. Met., 18, 699, 1987.

    [15] G. Horowitz, “Organic field-effect transistors”, Adv. Mater., 10, 365, 1998.

    [16] Q.J. Sun, J. Peng, “Low-power organic field-effect transistors and complementary inverter based on low-temperature processed Al2O3 dielectric”, Organic Electronics, 34, 118, 2016.

    [17] A. Chasin, V. Volskiy, M. Libois, K. Myny, M. Nag, M. Rockele,
    G.A.E. Vandenbosch, J. Genoe, G. Gielen, P. Heremans, “An integrated a-IGZOUHF energy harvester for passive RFID tags”, IEEE Trans. Electr. Dev. 61, 3289, 2014.

    [18] N.K. Elumalai, A. Uddin, “Open circuit voltage of organic solar cells: an in-depth review”, Energy Environ. Sci., 9, 391, 2016.

    [19] N.K. Elumalai, M.A. Mahmud, D. Wang, A. Uddin, “Perovskite solar cells: progress and advancements”, Energies, 9, 861, 2016.

    [20] W. Nie, H. Tsai, R. Asadpour, J.C. Blancon, A.J. Neukirch, G. Gupta, J.J. Crochet, M. Chhowalla, S. Tretiak, M.A. Alam, H.L. Wang, A.D. Mohite, “High-efficiency solution-processed perovskite solar cells with millimeter-scale grains”, Science, 347, 522, 2015.

    [21] U. Zschieschang, V.P. Bader, “Below-one-volt organic thin-film transistors with large on/off current ratios”, Organic Electronics, 49, 179, 2017.

    [22] C. Liu, E.F. Chor, L.S. Tan, “Investigations of HfO2∕AlGaN∕GaN metal-oxide-semiconductor high electron mobility transistors”, Appl. Phys. Lett., 88, 173504, 2006.

    [23] X.H. Zhang, W.J. P. Jr., S. Choi, B. Kippelen, “Low-voltage flexible organic complementary inverters with high noise margin and high dc gain”, Appl. Phys. Lett., 94, 043312, 2009.

    [24] X.H. Zhang, S.P. Tiwari, B. Kippelen, “Pentacene organic field-effect transistors with polymeric dielectric interfaces: Performance and stability”, Org. Electron., 10, 1133, 2009.

    [25] R. Chen, W. Zhou, M. Zhang, H.S. Kwok, “High performance self-aligned top-gate ZnO thin film transistors using sputtered Al2O3 gate dielectric”, Thin Solid Films, 520, 6681, 2012.

    [26] C.R. Newman, C.D. Frisbie, “Introduction to Organic Thin Film Transistors and Design of n-Channel Organic Semiconductors”, Chem. Mater., 16, 4436, 2004.

    [27] S. Tatemichi, M. Ichikawa, T. Koyama, “High mobility n-type thin-film transistors based on N, N’ ditridecyl perylene diimide
    with thermal treatments”, Appl. Phys. Lett., 89, 112108, 2006.

    [28] 施敏原著,黃調元譯, “半導體元件物理與製作技術(第二版)”,國立交通大學出版社,第六章,p311~p312。

    [29] G. Horowitz, “Organic Field-Effect Transistors”, Adv. Mater.
    1998,10,No.5.

    [30] M. Kitamura, “Low-voltage-operating complementary inverters with C60 and pentacene transistors on glass substrates”, Appl. Phys. Lett., 91, 53505, 2007.

    [31] S. Tatemichi, M. Ichikawa, “Low-voltage, high-gain, and high-mobility organic complementary inverters based on N,N’-ditridecyl-3,4,9,10-perylenetetracarboxylic diimide and pentacene”, phys. stat. sol. (RRL) 2, 2, 47, 2008.

    [32] Dietrich R.T.Zahn,Thorsten U.Kampen,HenryMéndez, "Transport gap of organic semiconductors in organic modified Schottky contacts", Applied Surface Science, 212–213 , 423–427, 2003.

    [33] 林益生, “以烷基駢苯衍生物作為主動層之有機薄膜電晶體”, 國立成功大學碩士論文, 2008.

    [34] 聚醯亞胺(Polyimide,縮寫PI)
    http://www.film-top1.com/product-info.asp?id=659

    [35] J. R. Ferraro, “Introductory raman spectroscopy”, Academic Press, 2nd, 15, 2002.

    [36] 陳進福, “低電壓操作有機互補式反相器之電特性研究”, 國立成功大學碩士論文, 2018.

    [37] 許庭嫚, “低電壓操作有機場效電晶體之電特性研究”, 國立成功大學碩士論文, 2017.

    下載圖示 校內:2024-10-14公開
    校外:2024-10-14公開
    QR CODE