簡易檢索 / 詳目顯示

研究生: 林柏任
Lin, Po-Jen
論文名稱: 口罩纖維與膠體奈米二氧化矽應用於砂-膨潤土
Application of Face Mask and Colloidal Nano-silica for Sand-bentonite
指導教授: 洪瀞
Hung, Ching
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 106
中文關鍵詞: 口罩纖維(FM)膠體奈米二氧化矽(CN)垃圾掩埋場襯層砂及膨潤土混合物
外文關鍵詞: face mask (FM), colloidal nano-silica (CN), liner structure of landfill, sand-bentonite mixtures
相關次數: 點閱:39下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著都市化發展與生活水準的提高,過量的垃圾堆置物可能對掩埋場襯層結構中的緩衝材料造成破壞,導致汙染滲濾液影響地下水生態系統。因此,在近年,使用加勁材料或添加劑來改善緩衝材料的力學性能顯得格外迫切。再加上,自2019年起,COVID-19的大流行導致大量的一次性口罩廢棄物產生,對垃圾堆置帶來新的負擔。有鑑於此,本研究嘗試評估一次性口罩纖維(FM)作為土壤加勁材料的潛能,並以膠體奈米二氧化矽(CN)作為複合材料的膠凝劑,期盼能透過纖維及奈米添加劑與土壤基質之間的相互作用,改善緩衝材料的力學性能。
    本研究使用台南市安平區沿岸海砂與10%及15%的鈉基膨潤土製成兩種配比的緩衝材料,分別為SB10及SB15,並且在最大乾單位重及最佳含水量的條件下,與不同添加量之口罩纖維及膠體奈米二氧化矽添加劑混合後進行試驗,同時觀察試體在不同養護時間下對力學性能的改善。研究透過無圍壓縮試驗、單向度壓密試驗、自由回脹試驗及三維體積收縮試驗。
    試驗結果表明,添加FM可以提高試樣的延展性,改善添加CN後應變較為脆性的行為,並於FM及CN混合添加後觀察到無圍壓縮強度的顯著提升,發揮複合材料性質互補的特性。同時,其他試驗中也觀察到,在試樣添加FM後,縮性限度得到改善,而添加CN後,試樣的壓密性、膨脹潛能也受到一定的控制。並於FM及CN混合使用後,特別是SB15且FM添加量0.5%及CN添加量15%的設計配比中,試樣整體之力學性質改善成效最為顯著。由於,本次試驗並未觀察到FM與CN的最佳使用量,未來可進行更多實驗與研究來驗證該添加材料使用的極限值。

    With the development of urbanization, the excessive accumulation of waste may cause damage to the buffer material of the landfill, resulting in polluted leachate affecting the groundwater ecosystem. Therefore, in recent years, it is rather important to use reinforcements or additives to improve the mechanical properties of buffer materials. Since 2019, the COVID-19 pandemic has resulted in a large amount of disposable face mask waste, posing a threat to the global environment. In view of this, this study attempts to use disposable face mask (FM) to evaluate its potential as a soil reinforcement and by using colloidal nano-silica (CN) as a gelling agent for the composite materials. It is expected that the mechanical properties of buffer materials can be improved through the interactions of FM, CN, and the soil matrix.
    In this study, two buffer materials, SB10 and SB15, were prepared by using sea sand mixed with 10% and 15% sodium bentonite. Different amounts of FM and CN were added to the buffer materials and their mechanical behaviors were evaluated. At the same time, the differences in the performance improvement of the samples under different curing times were observed.
    This study examines the mechanical behavior of the reinforced buffer material through four tests. The results show that the addition of FM and CN increased the strength of the soil specimens. Both the ultimate compressive strength and failure stress were improved by increasing the contents of FM and CN in the soil mixture. In addition, compressibility, swelling potential and shrinkage limit were all well improved by the use of the additives. Based on the experimental results, the addition of FM and CN can improve the mechanical properties of the buffer materials.

    目錄 摘要 I Extended Abstract II 致謝 X 目錄 XI 圖目錄 XV 表目錄 XVII 第1章 緒論 1 1.1 研究動機與目的 1 1.2 研究方法與內容 3 1.3 研究流程 4 第2章 文獻回顧 6 2.1 複合緩衝材料(Buffer materials) 6 2.1.1 膨潤土(Bentonite) 6 2.1.2 膨潤土礦物的結晶構造 7 2.1.3 複合材料(Composite materials)的介紹與特性 8 2.1.4 壓實的砂及膨潤土(Compacted Sand-bentonite)複合緩衝材料 9 2.2 加勁材料基本介紹 12 2.2.1 地工合成材料(Geosynthetics) 12 2.2.2 隨機分布的離散纖維(Randomly distributed discrete fiber) 13 2.2.3 一次性使用口罩(Face Mask, FM) 14 2.3 加勁材料對土壤的影響 15 2.3.1 加勁材料對標準夯實試驗的影響 15 2.3.2 加勁材料對無圍壓縮試驗的影響 16 2.3.3 加勁材料對膨脹性試驗的影響 18 2.4 土壤改良添加劑 19 2.4.1 傳統添加劑(Additives)的介紹與應用 19 2.4.2 奈米添加劑(Nano-materials)的特性 21 2.5 膠體奈米二氧化矽(Colloidal Nano-silica, CN) 22 2.5.1 膠體奈米二氧化矽的介紹 22 2.5.2 膠體奈米二氧化矽的應用 23 2.5.3 膠體奈米二氧化矽的作用機制 24 第3章 試驗儀器與土壤性質介紹 27 3.1 試驗儀器與設備 27 3.1.1 標準夯實試驗儀器 27 3.1.2 無圍壓縮試驗儀器 28 3.1.3 單向度壓密試驗儀器 29 3.1.4 自由回脹試驗儀器 31 3.1.5 三維體積收縮試驗儀器 31 3.2 試驗土樣的基本物理性質 32 3.2.1 試驗砂樣 32 3.2.2 篩分析試驗 33 3.2.3 鈉基膨潤土 35 3.2.4 砂及膨潤土複合材料 37 3.2.5 標準夯實試驗 39 3.3 加勁材料與添加劑 41 3.3.1 口罩纖維(Face Mask, FM) 41 3.3.2 膠體奈米二氧化矽(Colloidal Nano Silica, CN) 42 第4章 試體製作與試驗方法 44 4.1 試驗計畫與流程 44 4.2 無圍壓縮試驗 44 4.2.1 無圍壓縮試驗之試體配比與製作方法 44 4.2.2 無圍壓縮試驗流程 47 4.3 單向度壓密試驗 48 4.3.1 單向度壓密試驗之試體配比與製作方法 48 4.3.2 單向度壓密試驗流程 49 4.4 自由回脹試驗 49 4.4.1 自由回脹試驗之試體配比與製作方法 49 4.4.2 自由回脹試驗流程 50 4.5 三維體積收縮試驗 50 4.5.1 三維體積收縮試驗之試體配比與製作方法 50 4.5.2 三維體積收縮試驗流程 51 第5章 結果分析與討論 52 5.1 SB10的無圍壓縮試驗結果 52 5.1.1 添加口罩纖維(FM)的影響 53 5.1.2 添加膠體奈米二氧化矽(CN)的影響 56 5.1.3 養護時間差異的影響 59 5.1.4 添加FM與CN對緩衝材料的影響 60 5.2 SB15的無圍壓縮試驗結果 63 5.2.1 添加口罩纖維(FM)的影響 64 5.2.2 添加膠體奈米二氧化矽(CN)的影響 66 5.2.3 養護時間差異的影響 68 5.2.4 添加FM與CN對緩衝材料的影響 69 5.3 單向度壓密試驗結果 73 5.3.1 SB10 73 5.3.2 SB15 75 5.4 自由回脹試驗結果 77 5.4.1 SB10 77 5.4.2 SB15 80 5.5 三維體積收縮試驗結果 81 5.5.1 SB10 81 5.5.2 SB15 86 第6章 結論與建議 89 6.1 結論 89 6.2 建議 90 參考文獻 91

    1. Ahmad, F., Bateni, F., and Azmi, M. (2010). Performance evaluation of silty sand reinforced with fibres. Geotextiles and Geomembranes, 28(1), 93-99.
    2. Ahmad, F., Mujah, D., Hazarika, H., and Safari, A. (2012). Assessing the potential reuse of recycled glass fibre in problematic soil applications. Journal of Cleaner Production, 35, 102-107.
    3. Akbulut, S., Arasan, S., and Kalkan, E. (2007). Modification of clayey soils using scrap tire rubber and synthetic fibers. Applied Clay Science, 38(1-2), 23-32.
    4. Akgün, H., Koçkar, M. K., and Aktürk, Ö. (2006). Evaluation of a compacted bentonite/sand seal for underground waste repository isolation. Environmental Geology, 50(3), 331-337.
    5. Al-Rawas, A. A., Taha, R., Nelson, J. D., Al-Shab, B., and Al-Siyabi, H. (2002). A comparative evaluation of various additives used in the stabilization of expansive soils. Geotechnical Testing Journal, 25(2), 199-209.
    6. Aleem, S. A. E., Heikal, M., & Morsi, W. (2014). Hydration characteristic, thermal expansion and microstructure of cement containing nano-silica. Construction and building materials, 59, 151-160.
    7. ASTM D1557-91, (1991). "Test Method for Laboratory Compaction Characteristics of Soils using Modified Effort," Annual Book of Standards.
    8. ASTM D2166-91, (1995). “Standard test method for unconfined compressive strength of cohesive soil,” Designation D 2166-91: Annual book of ASTM Standards, vol. 4, American Society for Testing and Materials, Philadelphia, PA, USA.
    9. ASTM. (2004). “Standard test method for one-dimensional consolidation properties of soils.” D2435-04, West Conshohocken, PA.
    10. ASTM, D. (2012). Standard test methods for laboratory compaction characteristics of soil using standard effort. ASTM D698.
    11. ASTM (D4546 -14) Standard test methods for one-dimensional swell or collapse of soils. American Society for Testing of Materials, West Conshohocken
    12. Ateş, A. (2016). Mechanical properties of sandy soils reinforced with cement and randomly distributed glass fibers (GRC). Composites Part B: Engineering, 96, 295-304.
    13. Bahmani, S. H., Huat, B. B., Asadi, A., and Farzadnia, N. (2014). Stabilization of residual soil using SiO2 nanoparticles and cement. Construction and building materials, 64, 350-359.
    14. Basha, E., Hashim, R., Mahmud, H., and Muntohar, A. (2005). Stabilization of residual soil with rice husk ash and cement. Construction and building materials, 19(6), 448-453.
    15. Basma, A. A., and Tuncer, E. R. (1991). Effect of lime on volume change and compressibility of expansive clays. Transportation Research Record(1295).
    16. Bell, F. (1996). Lime stabilization of clay minerals and soils. Engineering geology, 42(4), 223-237.
    17. Benson, N. U., Bassey, D. E., and Palanisami, T. (2021). COVID pollution: impact of COVID-19 pandemic on global plastic waste footprint. Heliyon, 7(2), e06343.
    18. Björnström, J., Martinelli, A., Matic, A., Börjesson, L., & Panas, I. (2004). Accelerating effects of colloidal nano-silica for beneficial calcium–silicate–hydrate formation in cement. Chemical physics letters, 392(1-3), 242-248.
    19. Bojnourdi, S., Narani, S. S., Abbaspour, M., Ebadi, T., and Hosseini, S. M. M. (2020). Hydro-mechanical properties of unreinforced and fiber-reinforced used motor oil (UMO)-contaminated sand-bentonite mixtures. Engineering geology, 279, 105886.
    20. Bordoloi, S., Yamsani, S., Garg, A., Sreedeep, S., and Borah, S. (2015). Study on the efficacy of harmful weed species Eicchornia crassipes for soil reinforcement. Ecological Engineering, 85, 218-222.
    21. Cai, Y., Shi, B., Ng, C. W., and Tang, C.-s. (2006). Effect of polypropylene fibre and lime admixture on engineering properties of clayey soil. Engineering geology, 87(3-4), 230-240.
    22. Cetin, H., Fener, M., and Gunaydin, O. (2006). Geotechnical properties of tire-cohesive clayey soil mixtures as a fill material. Engineering geology, 88(1-2), 110-120.
    23. Changizi, F., and Haddad, A. (2015). Strength properties of soft clay treated with mixture of nano-SiO2 and recycled polyester fiber. Journal of Rock Mechanics and Geotechnical Engineering, 7(4), 367-378.
    24. Changizi, F., and Haddad, A. (2017). Improving the geotechnical properties of soft clay with nano-silica particles. Proceedings of the Institution of Civil Engineers-Ground Improvement, 170(2), 62-71.
    25. Chapuis, R. P. (1990). Sand–bentonite liners: predicting permeability from laboratory tests. Canadian Geotechnical Journal, 27(1), 47-57.
    26. Chen, W., Yu, H., Liu, Y., Hai, Y., Zhang, M., and Chen, P. (2011). Isolation and characterization of cellulose nanofibers from four plant cellulose fibers using a chemical-ultrasonic process. Cellulose, 18(2), 433-442.
    27. Choobbasti, A. J., and Kutanaei, S. S. (2017). Microstructure characteristics of cement-stabilized sandy soil using nanosilica. Journal of Rock Mechanics and Geotechnical Engineering, 9(5), 981-988.
    28. Choobbasti, A. J., Vafaei, A., and Kutanaei, S. S. (2015). Mechanical properties of sandy soil improved with cement and nanosilica. Open Engineering, 5(1).
    29. Clem, A. G., and Doehler, R. W. (1961). Industrial applications of bentonite. Clays and Clay minerals, 10(1), 272-283.
    30. Coo, J. L., So, Z. P., and Ng, C. W. (2016). Effect of nanoparticles on the shrinkage properties of clay. Engineering geology, 213, 84-88.
    31. Dasaka, S., and Sumesh, K. (2011). Effect of coir fiber on the stress–strain behavior of a reconstituted fine-grained soil. Journal of Natural Fibers, 8(3), 189-204.
    32. Dove, J. E., and Frost, J. D. (1999). Peak friction behavior of smooth geomembrane-particle interfaces. Journal of geotechnical and geoenvironmental engineering, 125(7), 544-555.
    33. Estabragh, A., Bordbar, A., and Javadi, A. (2011). Mechanical behavior of a clay soil reinforced with nylon fibers. Geotechnical and Geological Engineering, 29(5), 899-908.
    34. Estabragh, A., Bordbar, A., and Javadi, A. (2013). A study on the mechanical behavior of a fiber-clay composite with natural fiber. Geotechnical and Geological Engineering, 31(2), 501-510.
    35. Fredlund, M. D., Fredlund, D. G., and Wilson, G. (1997). Prediction of the soil-water characteristic curve from grain-size distribution and volume-mass properties. Proc., 3rd Brazilian Symp. on Unsaturated Soils,
    36. Fredlund, M. D., Wilson, G. W., and Fredlund, D. G. (2002). Use of the grain-size distribution for estimation of the soil-water characteristic curve. Canadian Geotechnical Journal, 39(5), 1103-1117.
    37. Frost, J., and Han, J. (1999). Behavior of interfaces between fiber-reinforced polymers and sands. Journal of geotechnical and geoenvironmental engineering, 125(8), 633-640.
    38. Gallagher, P. M., Conlee, C. T., and Rollins, K. M. (2007). Full-scale field testing of colloidal silica grouting for mitigation of liquefaction risk. Journal of geotechnical and geoenvironmental engineering, 133(2), 186-196.
    39. Gallagher, P. M., and Lin, Y. (2005). Column testing to determine colloidal silica transport mechanisms. In Innovations in grouting and soil improvement (pp. 1-10).
    40. Gallagher, P. M., and Lin, Y. (2009). Colloidal silica transport through liquefiable porous media. Journal of geotechnical and geoenvironmental engineering, 135(11), 1702-1712.
    41. Gallagher, P. M., and Mitchell, J. K. (2002). Influence of colloidal silica grout on liquefaction potential and cyclic undrained behavior of loose sand. Soil Dynamics and Earthquake Engineering, 22(9-12), 1017-1026.
    42. Gallagher, P. M., Pamuk, A., and Abdoun, T. (2007). Stabilization of liquefiable soils using colloidal silica grout. Journal of Materials in Civil Engineering, 19(1), 33-40.
    43. Gao, X., Jensen, R., McKnight, S., and Gillespie Jr, J. (2011). Effect of colloidal silica on the strength and energy absorption of glass fiber/epoxy interphases. Composites Part A: Applied Science and Manufacturing, 42(11), 1738-1747.
    44. Gartner, E., Maruyama, I., & Chen, J. (2017). A new model for the CSH phase formed during the hydration of Portland cements. Cement and Concrete Research, 97, 95-106.
    45. Georgiannou, V. N., Pavlopoulou, E.-M., and Bikos, Z. (2017). Mechanical behaviour of sand stabilised with colloidal silica. Geotechnical Research, 4(1), 1-11.
    46. Ghadr, S., and Assadi-Langroudi, A. (2018). Structure-based hydro-mechanical properties of sand-bentonite composites. Engineering geology, 235, 53-63.
    47. Ghadr, S., Liu, C.-H., Mrudunayani, P., and Hung, C. (2022). Effects of hydrophilic and hydrophobic nanosilica on the hydromechanical behaviors of mudstone soil. Construction and building materials, 331, 127263.
    48. Ghasabkolaei, N., Choobbasti, A. J., Roshan, N., and Ghasemi, S. E. (2017). Geotechnical properties of the soils modified with nanomaterials: A comprehensive review. Archives of Civil and Mechanical Engineering, 17(3), 639-650.
    49. Gray, D. H., and Ohashi, H. (1983). Mechanics of fiber reinforcement in sand. Journal of geotechnical engineering, 109(3), 335-353.
    50. Hofmann, M., Mohammed, A., Perrie, Y., Gbureck, U., and Barralet, J. (2009). High-strength resorbable brushite bone cement with controlled drug-releasing capabilities. Acta biomaterialia, 5(1), 43-49.
    51. Holtz, R. D. (2001). Geosynthetics for soil reinforcement. Seattle, Washington.
    52. Huang, J., and Airey, D. (1998). Properties of artificially cemented carbonate sand. Journal of geotechnical and geoenvironmental engineering, 124(6), 492-499.
    53. Huang, Y., and Wang, L. (2016). Experimental studies on nanomaterials for soil improvement: a review. Environmental Earth Sciences, 75(6), 1-10.
    54. Institution, B. S. (1990). British Standard Methods of Test for Soils for Civil Engineering Purposes: Part 5: Compressibility, Permeability and Durability Tests. British Standards Institution.
    55. Iranpour, B. (2016). The influence of nanomaterials on collapsible soil treatment. Engineering geology, 205, 40-53.
    56. Ismail, M. A., Joer, H. A., Sim, W. H., and Randolph, M. F. (2002). Effect of cement type on shear behavior of cemented calcareous soil. Journal of geotechnical and geoenvironmental engineering, 128(6), 520-529.
    57. Jacob, M., Thomas, S., and Varughese, K. T. (2004). Mechanical properties of sisal/oil palm hybrid fiber reinforced natural rubber composites. Composites science and Technology, 64(7-8), 955-965.
    58. Kalkan, E. (2013). Preparation of scrap tire rubber fiber–silica fume mixtures for modification of clayey soils. Applied Clay Science, 80, 117-125.
    59. Kar, R., and Pradhan, P. (2011). Strength and compressibility characteristics of randomly distributed fiber-reinforced soil. International Journal of Geotechnical Engineering, 5(2), 235-243.
    60. Kassim, K. A., and Chern, K. K. (2004). Lime stabilized Malaysian cohesive soils. Malaysian Journal of Civil Engineering, 16(1).
    61. Koerner, R., & Hsuan, Y. (2001). Geosynthetics: characteristics and testing. In Geotechnical and Geoenvironmental Engineering Handbook (pp. 173-196). Springer.
    62. Kolias, S., Kasselouri-Rigopoulou, V., and Karahalios, A. (2005). Stabilisation of clayey soils with high calcium fly ash and cement. Cement and Concrete Composites, 27(2), 301-313.
    63. Komine, H. (2004). Simplified evaluation on hydraulic conductivities of sand–bentonite mixture backfill. Applied Clay Science, 26(1-4), 13-19.
    64. Komine, H. (2010). Predicting hydraulic conductivity of sand–bentonite mixture backfill before and after swelling deformation for underground disposal of radioactive wastes. Engineering geology, 114(3-4), 123-134.
    65. Komine, H., and Ogata, N. (1999). Experimental study on swelling characteristics of sand-bentonite mixture for nuclear waste disposal. Soils and foundations, 39(2), 83-97.
    66. Komine, H., and Ogata, N. (2004). Predicting swelling characteristics of bentonites. Journal of geotechnical and geoenvironmental engineering, 130(8), 818-829.
    67. Kong, L., Tian, Y., Li, N., Liu, Y., Zhang, J., Zhang, J., and Zuo, W. (2018). Highly-effective phosphate removal from aqueous solutions by calcined nano-porous palygorskite matrix with embedded lanthanum hydroxide. Applied Clay Science, 162, 507-517.
    68. Kontoleontos, F., Tsakiridis, P., Marinos, A., Kaloidas, V., and Katsioti, M. (2012). Influence of colloidal nanosilica on ultrafine cement hydration: Physicochemical and microstructural characterization. Construction and building materials, 35, 347-360.
    69. Krishna Rao, S., and Nasr, A. (2012). Laboratory study on the relative performance of silty-sand soils reinforced with linen fiber. Geotechnical and Geological Engineering, 30(1), 63-74.
    70. Kumar, A., Walia, B. S., and Mohan, J. (2006). Compressive strength of fiber reinforced highly compressible clay. Construction and building materials, 20(10), 1063-1068.
    71. Kurugodu, H., Bordoloi, S., Hong, Y., Garg, A., Garg, A., Sreedeep, S., and Gandomi, A. H. (2018). Genetic programming for soil-fiber composite assessment. Advances in Engineering Software, 122, 50-61.
    72. Kutanaei, S. S., and Choobbasti, A. J. (2016). Experimental study of combined effects of fibers and nanosilica on mechanical properties of cemented sand. Journal of Materials in Civil Engineering, 28(6), 06016001.
    73. Luo, K., Li, J., Lu, Z., Jiang, J., & Niu, Y. (2019). Effect of nano-SiO2 on early hydration of natural hydraulic lime. Construction and building materials, 216, 119-127.
    74. Ma, L., Zhu, Y., Feng, P., Song, G., Huang, Y., Liu, H., Zhang, J., Fan, J., Hou, H., and Guo, Z. (2019). Reinforcing carbon fiber epoxy composites with triazine derivatives functionalized graphene oxide modified sizing agent. Composites Part B: Engineering, 176, 107078.
    75. Maher, M., and Ho, Y. (1994). Mechanical properties of kaolinite/fiber soil composite. Journal of geotechnical engineering, 120(8), 1381-1393.
    76. Maher, M. H., and Gray, D. H. (1990). Static response of sands reinforced with randomly distributed fibers. Journal of geotechnical engineering, 116(11), 1661-1677.
    77. Mahore, K., Chaugaonkar, S., Tiwari, S., Yadav, G., and Modi, M. (2017). ’Abrasive Wear Behaviour of PTFE Filled E-Glass Fiber Reinforced Polyester Composites. International Research Journal of Engineering and Technology, 4(8), 1036-1039.
    78. Majeed, Z. H., and Taha, M. R. (2013). A review of stabilization of soils by using nanomaterials. Australian Journal of Basic and Applied Sciences, 7(2), 576-581.
    79. Malekzadeh, M., and Bilsel, H. (2014). Hydro-mechanical behavior of polypropylene fiber reinforced expansive soils. KSCE Journal of Civil Engineering, 18(7), 2028-2033.
    80. McCaustland, D. (1925). Lime dirt in roads. Proceedings of National Lime Association, 7, 12-18.
    81. Miller, C. J., and Rifai, S. (2004). Fiber reinforcement for waste containment soil liners. Journal of Environmental Engineering, 130(8), 891-895.
    82. Mirzababaei, M., Miraftab, M., Mohamed, M., and McMahon, P. (2013a). Impact of carpet waste fibre addition on swelling properties of compacted clays. Geotechnical and Geological Engineering, 31(1), 173-182.
    83. Mirzababaei, M., Miraftab, M., Mohamed, M., and McMahon, P. (2013b). Unconfined compression strength of reinforced clays with carpet waste fibers. Journal of geotechnical and geoenvironmental engineering, 139(3), 483-493.
    84. Mishra, B., and Gupta, M. K. (2018). Use of randomly oriented polyethylene terephthalate (PET) fiber in combination with fly ash in subgrade of flexible pavement. Construction and building materials, 190, 95-107.
    85. Moghal, A. A. B., Chittoori, B. C., and Basha, B. M. (2018). Effect of fibre reinforcement on CBR behaviour of lime-blended expansive soils: reliability approach. Road Materials and Pavement Design, 19(3), 690-709.
    86. Muhammad, N., and Siddiqua, S. (2022). Calcium bentonite vs sodium bentonite: The potential of calcium bentonite for soil foundation. Materials Today: Proceedings, 48, 822-827.
    87. Mujah, D., Ahmad, F., Hazarika, H., and Safari, A. (2013). Evaluation of the mechanical properties of recycled glass fibers-derived three dimensional geomaterial for ground improvement. Journal of Cleaner Production, 52, 495-503.
    88. Mukherjee, K., and Mishra, A. K. (2017). Performance enhancement of sand–bentonite mixture due to addition of fiber and geosynthetic clay liner. International Journal of Geotechnical Engineering, 11(2), 107-113.
    89. Mukherjee, K., and Mishra, A. K. (2019a). Evaluation of hydraulic and strength characteristics of sand-bentonite mixtures with added tire fiber for landfill application. Journal of Environmental Engineering, 145(6), 04019026.
    90. Mukherjee, K., and Mishra, A. K. (2019b). Hydraulic and mechanical characteristics of compacted sand–bentonite: Tyre chips mix for its landfill application. Environment, Development and Sustainability, 21(3), 1411-1428.
    91. Mukherjee, K., and Mishra, A. K. (2019c). Hydro-mechanical properties of sand-bentonite-glass fiber composite for landfill application. KSCE Journal of Civil Engineering, 23(11), 4631-4640.
    92. Murray, H. H. (2006). Bentonite applications. Developments in Clay Science, 2, 111-130.
    93. Naaman, A. E. (2003). Engineered steel fibers with optimal properties for reinforcement of cement composites. Journal of advanced concrete technology, 1(3), 241-252.
    94. Nowack, B., and Bucheli, T. D. (2007). Occurrence, behavior and effects of nanoparticles in the environment. Environmental pollution, 150(1), 5-22.
    95. Ogata, N., Kosaki, A., Ueda, H., Asano, H., and Takao, H. (1999). Execution techniques for high level radioactive waste disposal. 4. Design and manufacturing procedure of engineered barriers. Genshiryoku Bakkuendo Kenkyu, 5(2), 103-121.
    96. Oh, T., You, I., Banthia, N., and Yoo, D.-Y. (2021). Deposition of nanosilica particles on fiber surface for improving interfacial bond and tensile performances of ultra-high-performance fiber-reinforced concrete. Composites Part B: Engineering, 221, 109030.
    97. Oikonomou, N., and Mavridou, S. (2009). The use of waste tyre rubber in civil engineering works. In Sustainability of construction materials (pp. 213-238). Elsevier.
    98. Olgun, M. (2013). Effects of polypropylene fiber inclusion on the strength and volume change characteristics of cement-fly ash stabilized clay soil. Geosynthetics International, 20(4), 263-275.
    99. Park, S.-S. (2009). Effect of fiber reinforcement and distribution on unconfined compressive strength of fiber-reinforced cemented sand. Geotextiles and Geomembranes, 27(2), 162-166.
    100. Park, S.-S. (2011). Unconfined compressive strength and ductility of fiber-reinforced cemented sand. Construction and building materials, 25(2), 1134-1138.
    101. Pavlopoulou, E.-M. E., and Georgiannou, V. N. (2021). Effect of colloidal silica aqueous gel on the monotonic and cyclic response of sands. Journal of geotechnical and geoenvironmental engineering, 147(11), 04021122.
    102. Persoff, P., Moridis, G. J., Apps, J. A., and Pruess, K. (1998). Evaluation tests for colloidal silica for use in grouting applications. Geotechnical Testing Journal, 21(3), 264-269.
    103. Pham, H., and Nguyen, Q. P. (2014). Effect of silica nanoparticles on clay swelling and aqueous stability of nanoparticle dispersions. Journal of Nanoparticle Research, 16(1), 1-11.
    104. Prabakar, J., and Sridhar, R. (2002). Effect of random inclusion of sisal fibre on strength behaviour of soil. Construction and building materials, 16(2), 123-131.
    105. Puppala, A., Hoyos, L., Viyanant, C., and Musenda, C. (2001). Fiber and fly ash stabilization methods to treat soft expansive soils. In Soft ground technology (pp. 136-145).
    106. Puppala, A. J., and Musenda, C. (2000). Effects of fiber reinforcement on strength and volume change in expansive soils. Transportation Research Record, 1736(1), 134-140.
    107. Qing, Y., Zenan, Z., Deyu, K., & Rongshen, C. (2007). Influence of nano-SiO2 addition on properties of hardened cement paste as compared with silica fume. Construction and building materials, 21(3), 539-545.
    108. Rajak, D. K., Pagar, D. D., Kumar, R., and Pruncu, C. I. (2019). Recent progress of reinforcement materials: a comprehensive overview of composite materials. Journal of Materials Research and Technology, 8(6), 6354-6374.
    109. Rao, S., Thyagaraj, T., and Thomas, H. (2006). Swelling of compacted clay under osmotic gradients. Geotechnique, 56(10), 707-713.
    110. Rong, Z., Sun, W., Xiao, H., & Jiang, G. (2015). Effects of nano-SiO2 particles on the mechanical and microstructural properties of ultra-high performance cementitious composites. Cement and Concrete Composites, 56, 25-31.
    111. Ronca, S. (2017). Polyethylene. In Brydson's plastics materials (pp. 247-278). Elsevier.
    112. Saberian, M., Li, J., Kilmartin-Lynch, S., and Boroujeni, M. (2021). Repurposing of COVID-19 single-use face masks for pavements base/subbase. Science of the Total Environment, 769, 145527.
    113. Sabry, M. M. A. (1977). Minerological and Engineering Properties of Compacted Soil-lime Mixtures
    114. Sathishkumar, T., Satheeshkumar, S., and Naveen, J. (2014). Glass fiber-reinforced polymer composites–a review. Journal of reinforced plastics and composites, 33(13), 1258-1275.
    115. Sherwood, P. (1993). Soil stabilization with cement and lime.
    116. Sobti, J., & Singh, S. K. (2017). Techno-economic analysis for barrier materials in landfills. International Journal of Geotechnical Engineering, 11(5), 467-478.
    117. Sällfors, G., and Öberg-Högsta, A.-L. (2002). Determination of hydraulic conductivity of sand-bentonite mixtures for engineering purposes. Geotechnical and Geological Engineering, 20(1), 65-80.
    118. Sridharan, A., and Gurtug, Y. (2004). Swelling behaviour of compacted fine-grained soils. Engineering geology, 72(1-2), 9-18.
    119. Srikanth, V., and Mishra, A. (2016). A laboratory study on the geotechnical characteristics of sand–bentonite mixtures and the role of particle size of sand. International Journal of Geosynthetics and Ground Engineering, 2(1), 1-10.
    120. Stefanidou, M., and Papayianni, I. (2012). Influence of nano-SiO2 on the Portland cement pastes. Composites Part B: Engineering, 43(6), 2706-2710.
    121. Stewart, D., Studds, P., & Cousens, T. (2003). The factors controlling the engineering properties of bentonite-enhanced sand. Applied Clay Science, 23(1-4), 97-110.
    122. Sun, D. a., Cui, H., and Sun, W. (2009). Swelling of compacted sand–bentonite mixtures. Applied Clay Science, 43(3-4), 485-492.
    123. Taha, M. R., and Taha, O. M. E. (2012). Influence of nano-material on the expansive and shrinkage soil behavior. Journal of Nanoparticle Research, 14(10), 1-13.
    124. Tang, C.-S., Shi, B., Cui, Y.-J., Liu, C., and Gu, K. (2012). Desiccation cracking behavior of polypropylene fiber–reinforced clayey soil. Canadian Geotechnical Journal, 49(9), 1088-1101.
    125. Tang, C.-S., Shi, B., and Zhao, L.-Z. (2010). Interfacial shear strength of fiber reinforced soil. Geotextiles and Geomembranes, 28(1), 54-62.
    126. Tang, C., Shi, B., Gao, W., Chen, F., and Cai, Y. (2007). Strength and mechanical behavior of short polypropylene fiber reinforced and cement stabilized clayey soil. Geotextiles and Geomembranes, 25(3), 194-202.
    127. Tomar, A., Sharma, T., and Singh, S. (2020). Strength properties and durability of clay soil treated with mixture of nano silica and Polypropylene fiber. Materials Today: Proceedings, 26, 3449-3457.
    128. Tremblay, H., Duchesne, J., Locat, J., and Leroueil, S. (2002). Influence of the nature of organic compounds on fine soil stabilization with cement. Canadian Geotechnical Journal, 39(3), 535-546.
    129. Trouzine, H., Bekhiti, M., and Asroun, A. (2012). Effects of scrap tyre rubber fibre on swelling behaviour of two clayey soils in Algeria. Geosynthetics International, 19(2), 124-132.
    130. Tuncer, E. R., and Basma, A. A. (1991). Strength and stress-strain characteristics of a lime-treated cohesive soil. Transportation Research Record(1295).
    131. Uddin, F. (2008). Clays, nanoclays, and montmorillonite minerals. Metallurgical and Materials Transactions A, 39(12), 2804-2814.
    132. ur Rehman, Z., and Khalid, U. (2021). Reuse of COVID-19 face mask for the amelioration of mechanical properties of fat clay: A novel solution to an emerging waste problem. Science of the Total Environment, 794, 148746.
    133. Wong, C., Pedrotti, M., El Mountassir, G., and Lunn, R. J. (2018). A study on the mechanical interaction between soil and colloidal silica gel for ground improvement. Engineering geology, 243, 84-100.
    134. Xu, W., Yin, Z.-Y., Wang, H.-L., and Wang, X. (2022). Experimental study on the monotonic mechanical behavior of completely decomposed granite soil reinforced by disposable face-mask chips. Journal of Cleaner Production, 352, 131528.
    135. Xu, Z., Zhou, Z., Du, P., & Cheng, X. (2016). Effects of nano-silica on hydration properties of tricalcium silicate. Construction and building materials, 125, 1169-1177.
    136. Yan, D.-X., Ren, P.-G., Pang, H., Fu, Q., Yang, M.-B., and Li, Z.-M. (2012). Efficient electromagnetic interference shielding of lightweight graphene/polystyrene composite. Journal of Materials Chemistry, 22(36), 18772-18774.
    137. Yetimoglu, T., Inanir, M., & Inanir, O. E. (2005). A study on bearing capacity of randomly distributed fiber-reinforced sand fills overlying soft clay. Geotextiles and Geomembranes, 23(2), 174-183.
    138. Yetimoglu, T., & Salbas, O. (2003). A study on shear strength of sands reinforced with randomly distributed discrete fibers. Geotextiles and Geomembranes, 21(2), 103-110.
    139. You, M.-Q. (2000). 不同試驗方法對黏土壓縮與壓密性質之影響 National Central University.
    140. Zapata, L., Portela, G., Suárez, O., & Carrasquillo, O. (2013). Rheological performance and compressive strength of superplasticized cementitious mixtures with micro/nano-SiO2 additions. Construction and building materials, 41, 708-716.
    141. Zomorodian, S. A., Shabnam, M., Armina, S., and O'Kelly, B. C. (2017). Strength enhancement of clean and kerosene-contaminated sandy lean clay using nanoclay and nanosilica as additives. Applied Clay Science, 140, 140-147.

    下載圖示 校內:2025-07-14公開
    校外:2025-07-14公開
    QR CODE