| 研究生: |
林詩婷 Lin, Shih-Ting |
|---|---|
| 論文名稱: |
Znf179基因缺失導致小鼠胚胎發育時期血管形成異常及死亡 Deficiency of Znf179 causes embryonic lethal phenotype associated with defected vasculogenesis |
| 指導教授: |
張文昌
Chang, Wen-Chang 李宜釗 Lee, Yi-Chao |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 藥理學研究所 Department of Pharmacology |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 65 |
| 中文關鍵詞: | 腦指蛋白 、胚胎時期死亡 、胚胎發育 、血管新生 |
| 外文關鍵詞: | Znf179, embryonic lethal, embryo development, vasculogenesis |
| 相關次數: | 點閱:136 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Znf179是RING finger protein家族的一員。在胚胎發育的過程中,Znf179在腦部的表現會逐漸地增加,顯示Znf179可能影響神經系統的發育。實驗室過去的研究發現,在P19細胞分化為神經細胞的過程中,Znf179的確會隨著神經細胞的分化其表現量逐漸的增加,而在P19細胞進行神經細胞分化的過程中以shRNA去抑制Znf179的表現則會明顯地抑制神經細胞的分化。除了P19細胞外,抑制Znf179的表現同樣會影響初級培養的小腦神經顆粒細胞(cerebellar granule cells)的神經分化。進一步的研究發現Znf179可能透過影響p35及p27的基因表現而影響神經細胞的分化。為了更進一步釐清Znf179的生理作用及其對腦部發育的影響,在基因體醫學國家型科技計畫核心設施的協助下,我們建立了Znf179基因剔除小鼠。我們的研究結果顯示,在129/sv與C57BL/6J (B6)混合遺傳背景的小鼠中有超過70%的Znf179-/-小鼠會在離乳前死亡,而在129/sv純品系的小鼠中,超過75%的Znf179-/-小鼠會在胚胎時期死亡。我們發現大部分的Znf179-/-小鼠外表看起來蒼白,並且有血管的缺陷,顯示可能是由於血管生成的缺陷而導致Znf179-/-小鼠在胚胎時期死亡。 除此之外,我們也發現有些Znf179-/-小鼠有露腦畸形(exencephaly)的現象。當我們觀察存活下來的Znf179-/-小鼠時發現,Znf179-/-小鼠的體型較正常小鼠小,有生長遲緩的現象。除了體型外Znf179-/-小鼠的腦部也明顯地較小,切片染色的結果,初步顯示Znf179-/-小鼠腦部的結構除了大腦皮質較薄外與正常小鼠並沒有明顯的差異。綜合以上的結果顯示,Znf179基因對於胚胎發育具有重要的影響。
Znf179 is a member of the RING finger protein family. During embryogenesis, Znf179 is expressed in a restricted manner in the brain, suggesting a potential role in nervous system development. Previously, our laboratory found that the expression of Znf179 was upregulated during P19 cells neuronal differentiation. Inhibition of Znf179 expression by RNA interference significantly attenuated neuronal differentiation of P19 cells and the primary culture of cerebellar granule cells. Further studies revealed that the induction of Znf179 gene expression may be associated with p35 expression and p27 protein accumulation, and is critical for neuronal differentiation. To provide direct evidence on the physiological function of Znf179 on brain development, we generated Znf179 knockout mice to examine the function of Znf179 in vivo. Our data showed that more than 70% of Znf179-/- mice in the 129/sv x C57BL/6J (B6) mixed genetic background died before weaning. In contrast, most of the Znf179-/- mice in the pure 129/sv genetic background died in utero. Upon further investigation, we found that most of the Znf179-/- embryos looked pale and showed defect in blood vessels, suggesting that the embryonic lethality might be caused by impairing vasculogenesis. Moreover, some of the Znf179-/- embryos also exhibited exencephaly. The survived pups of Znf179-/- mice manifested growth retardation as indicated by smaller size. Although the organization of the brain did not appear to be affected in Znf179-/- mice, the brain size and the thickness of cerebral cortex from the Znf179-/- mice were reduced. Taken together, our results provide evidence for the important function of Znf179 in embryo development.
1 Copp, A. J., Greene, N. D. E. & Murdoch, J. N. The genetic basis of mammalian neurulation. Nature Reviews Genetics 4, 784-793 (2003).
2 Juriloff, D. M., Harris, M. J., Tom, C. & Macdonald, K. B. Normal Mouse Strains Differ in the Site of Initiation of Closure of the Cranial Neural-Tube. Teratology 44, 225-233 (1991).
3 Fleming, A. & Copp, A. J. A genetic risk factor for mouse neural tube defects: defining the embryonic basis. Human Molecular Genetics 9, 575-581 (2000).
4 Lawson, A., Schoenwolf, G. C., England, M. A., Addai, F. K. & Ahima, R. S. Programmed cell death and the morphogenesis of the hindbrain roof plate in the chick embryo. Anatomy and Embryology 200, 509-519 (1999).
5 Kuida, K., Haydar TF, Kuan CY, Gu Y, Taya C, Karasuyama H, Su MS, Rakic P, Flavell RA. Reduced apoptosis and cytochrome c-mediated caspase activation in mice lacking Caspase 9. Cell 94, 325-337 (1998).
6 Hakem, R., Hakem A, Duncan GS, Henderson JT, Woo M, Soengas MS,
Elia A, de la Pompa JL, Kagi D, Khoo W, Potter J, Yoshida R, Kaufman SA,
Lowe SW, Penninger JM, Mak TW. Differential requirement for caspase 9 in
apoptotic pathways in vivo. Cell 94, 339-352 (1998).
7 Sah, V. P., Attardi, L.D., Mulligan, G.J., Williams, B.O., Bronson, R.T., Jacks, T. A subset of p53-deficient embryos exhibit exencephaly. Nat Genet 10, 175-180 (1995).
8 Homanics, G. E. et al. Exencephaly and Hydrocephaly in Mice with Targeted Modification of the Apolipoprotein-B (Apo-B) Gene. Teratology 51, 1-10 (1995).
9 Farese, R. V., Ruland, S. L., Flynn, L. M., Stokowski, R. P. & Young, S. G. Knockout of the Mouse Apolipoprotein-B Gene Results in Embryonic Lethality in Homozygotes and Protection against Diet-Induced Hypercholesterolemia in Heterozygotes. Proceedings of the National Academy of Sciences of the United States of America 92, 1774-1778 (1995).
10 Migliorini, D. et al. Mdm4 (Mdmx) regulates p53-induced growth arrest and neuronal cell death during early embryonic mouse development. Molecular and Cellular Biology 22, 5527-5538 (2002).
11 Hirata, H., Tomita, K., Bessho, Y. & Kageyama, R. Hes1 and Hes3 regulate maintenance of the isthmic organizer and development of the mid/hindbrain. Embo Journal 20, 4454-4466 (2001).
12 Zhong, W. M. Jiang, M.M., Schonemann, M.D., Meneses, J.J., Pedersen, R.A.,
Jan, L.Y., Jan, Y.N. Mouse numb is an essential gene involved in cortical
neurogenesis. Proceedings of the National Academy of Sciences of the United
States of America 97, 6844-6849 (2000).
13 Lardelli, M., Williams, R., Mitsiadis, T. & Lendahl, U. Expression of the Notch 3 intracellular domain in mouse central nervous system progenitor cells is lethal and leads to disturbed neural tube development. Mechanisms of Development 59, 177-190 (1996).
14 Gotz, M. & Huttner, W. B. The cell biology of neurogenesis. Nature Reviews Molecular Cell Biology 6, 777-788, doi:Doi 10.1038/Nrm1739 (2005).
15 Knoepfler, P. S. Stem cells on the brain. Archives of Neurology 65, 311-315 (2008).
16 Chenn, A. & Walsh, C. A. Regulation of cerebral cortical size by control of cell cycle exit in neural precursors. Science 297, 365-369 (2002).
17 Talos, F., Abraham, A., Vaseva, A. V., Holembowski, L., Tsirka, S. E., Scheel, A., Bode, D., Dobbelstein, M., Brück, W., Moll, U. M. p73 is an essential regulator of neural stem cell maintenance in embryonal and adult CNS neurogenesis. Cell Death and Differentiation 17, 1816-1829 (2010).
18 Rakić, S., Yanagawa, Y., Obata, K., Faux, C., Parnavelas, J. G., Nikolić, M.
Cortical Interneurons Require p35/Cdk5 for their Migration and Laminar Organization. Cerebral Cortex 19, 1857-1869 (2009).
19 Sasaki, S., Mori, D., Toyo-oka, K., Chen, A., Garrett-Beal, L., Muramatsu, M., Miyagawa, S., Hiraiwa, N., Yoshiki, A., Wynshaw-Boris, A., Hirotsune, S. Complete loss of Ndel1 results in neuronal migration defects and early embryonic lethality. Molecular and Cellular Biology 25, 7812-7827 (2005).
20 Hirschberg, A., Deng, S., Korostylev, A., Paldy, E., Costa, M. R., Worzfeld, T., Vodrazka, P., Wizenmann, A., Götz, M., Offermanns, S., Kuner, R. Gene Deletion Mutants Reveal a Role for Semaphorin Receptors of the Plexin-B Family in Mechanisms Underlying Corticogenesis. Molecular and Cellular Biology 30, 764-780 (2010).
21 Papaioannou. Virginia E, B. R. Mouse phenotypes : a handbook of mutation analysis. (2004).
22 Meilhac, S. M., Esner, M., Kelly, R. G., Nicolas, J. F. & Buckingham, M. E. The clonal origin of myocardial cells in different regions of the embryonic mouse heart. Dev Cell 6, 685-698 (2004).
23 Patan, S. Vasculogenesis and angiogenesis as mechanisms of vascular network formation, growth and remodeling. J Neuro-Oncol 50, 1-15 (2000).
24 Zhao, Q., Chen, K. S., Bejjani, B. A. & Lupski, J. R. Cloning, genomic structure, and expression of mouse ring finger protein gene Znf179. Genomics 49, 394-400 (1998).
25 Orimo, A., Inoue, S., Ikeda, K., Sato, M., Kato, A., Tominaga, N., Suzuki, M., Noda, T., Watanabe, M., Muramatsu, M. Molecular cloning, localization, and developmental expression of mouse brain finger protein (Bfp)/ZNF179: Distribution of bfp mRNA partially coincides with the affected areas of Smith-Magenis syndrome. Genomics 54, 59-69 (1998).
26 Pao, P. C., Huang, N. K., Liu, Y. W., Yeh, S. H., Lin, S. T., Hsieh, C. P., Huang, A. M., Huang, H. S., Tseng, J. T., Chang, W. C., Lee, Y. C. A novel RING finger protein, Znf179, modulates cell cycle exit and neuronal differentiation of P19 embryonal carcinoma cells. Cell Death and Differentiation, (2011).
27 Wong, G. T. Speed congenics: Applications for transgenic and knock-out mouse strains. Neuropeptides 36, 230-236 (2002).
28 LeCouter, J. E., Kablar, B., Whyte, P. F., Ying, C. & Rudnicki, M. A. Strain-dependent embryonic lethality in mice lacking the retinoblastoma-related p130 gene. Development 125, 4669-4679 (1998).
29 Cobrinik, D., Lee, M. H., Hannon, G., Mulligan, G., Bronson, R. T., Dyson, N., Harlow, E., Beach, D., Weinberg, R. A., Jacks, T. Shared role of the pRB-related p130 and p107 proteins in limb development. Genes & Development 10, 1633-1644 (1996).
30 Kuang, C., Xiao, Y., Yang, L., Chen, Q., Wang, Z., Conway, S. J., Chen, Y.
Intragenic deletion of Tgif causes defectsin brain development. Human Molecular Genetics 15, 3508-3519 (2006).
31 Hayhurst, M. & McConnell, S. K. Mouse models of holoprosencephaly. Current Opinion in Neurology 16, 135-141 (2003).
32 Bonyadi, M., Rusholme, S. A., Cousins, F. M., Su, H. C., Biron, C. A., Farrall, M., Akhurst, R. J.Mapping of a major genetic modifier of embryonic lethality in TGF beta 1 knockout mice. Nature Genetics 15, 207-211 (1997).
33 Liu, J. P., Baker, J., Perkins, A. S., Robertson, E. J. & Efstratiadis, A. Mice Carrying Null Mutations of the Genes Encoding Insulin-Like Growth Factor-I (Igf-1) and Type-1 Igf Receptor (Igf1r). Cell 75, 59-72 (1993).
34 Proetzel, G., Pawlowski, S. A., Wiles, M. V., Yin, M., Boivin, G. P., Howles, P. N., Ding, J., Ferguson, M. W., Doetschman, T. Transforming Growth Factor-Beta-3 Is Required for Secondary Palate Fusion. Nature Genetics 11, 409-414 (1995).
35 Rohrer, D. K. et al. Rohrer, D. K., Desai, K. H., Jasper, J. R., Stevens, M. E., Regula, D. P. Jr., Barsh, G. S., Bernstein, D., Kobilka, B. K. Targeted disruption of the mouse beta 1-adrenergic receptor gene: Developmental and cardiovascular effects. Proceedings of the National Academy of Sciences of the United States of America 93, 7375-7380 (1996).
36 Rozmahel, R., Wilschanski, M., Matin, A., Plyte, S., Oliver, M., Auerbach, W., Moore, A., Forstner, J., Durie, P., Nadeau, J., Bear, C., Tsui, L. C. Modulation of disease severity in cystic fibrosis transmembrane conductance regulator deficient mice by a secondary genetic factor. Nature Genetics 12, 280-287 (1996).
37 Sibilia, M. & Wagner, E. F. Strain-Dependent Epithelial Defects in Mice Lacking the Egf Receptor (Vol 269, Pg 234, 1995). Science 269, 909-909 (1995).
38 Threadgill, D. W., Dlugosz, A. A., Hansen, L. A., Tennenbaum, T., Lichti, U., Yee, D., LaMantia, C., Mourton, T., Herrup, K., Harris, R. C., et al.Targeted Disruption of Mouse Egf Receptor - Effect of Genetic Background on Mutant Phenotype. Science 269, 230-234 (1995).
39 Shen, T. L., Park, A. Y., Alcaraz, A., Peng, X., Jang, I., Koni, P., Flavell, R. A., Gu, H., Guan, J. L. Conditional knockout of focal adhesion kinase in endothelial cells reveals its role in angiogenesis and vascular development in late embryogenesis. Journal of Cell Biology 169, 941-952 (2005).
40 Itoh, F., Itoh, S., Carvalho, R. L., Adachi, T., Ema, M., Goumans, M. J., Larsson, J., Karlsson, S., Takahashi, S., Mummery, C. L., Dijke, P. T., Kato, M. Poor vessel formation in embryos from knock-in mice expressing ALK5 with L45 loop mutation defective in Smad activation. Laboratory Investigation 89, 800-810 (2009).
41 Kina T, Ikuta K, Takayama E, Wada K, Majumdar AS, Weissman IL, Katsura Y. The monoclonal antibody TER-119 recognizes a molecule associated with glycophorin A and specifically marks the late stages of murine erythroid lineage. British Journal of Haematology 109, 280-287 (2000).