簡易檢索 / 詳目顯示

研究生: 郭奕詠
Kuo, Yi-Yung
論文名稱: 工具機主軸冷卻液流阻與溫升之監控及預警判準研究
Monitoring of Flow Resistance and Temperature Rise of Spindle Coolant and Early Warning Criteria for Machine Tools
指導教授: 楊天祥
Yang, Tian-Shiang
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 95
中文關鍵詞: 工業 4.0相似性ANSYS模擬流阻監控
外文關鍵詞: Industrial 4.0, similarity method, ANSYS simulation, monitoring system
相關次數: 點閱:79下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 自十八世紀工業革命以來,提升生產力一直是工業界創新的重點。 現階段已發展至工業 4.0 也就是在工業生產及製程上,加上物聯網以及智慧型整合感控系統, 能夠運用大數據及雲端的方法,使工具機能夠達到高度自動化,自動排除生產障礙,提升生產效率。 而台灣也在國際化的驅使下,跟進工業 4.0的腳步。在現今產線需求增加,工具機能否正常運作變得格外重要。 為了能夠提升工具機的加工精度以及正常運作 ,仰賴監控系統的 輔助 本論文利用實驗方法,監控工具機流道的流阻變化以及溫升趨勢。 使用相似性的方法建立一套循環流道 ,模擬工具機主軸內部的循環 流道,並且加裝壓力計以及流量計監控流阻變化,蒐集異常狀況並分析。 同時使用漆包線纏繞於我們所建立之 循環流道,模擬主軸因軸承以 及線圈產生的熱量,並在流道表面黏貼熱電偶,觀察流道溫度分布情形。同時,我們也利用 ANSYS進行管壁溫度分布的模擬, 並將結果 與實際業界參考指標做比較,分析 流道管壁溫度與流體 溫度之關係,判斷是否經由監控進出口水溫差,即可反映出流道管壁 溫度分布的均勻性。

    Since the industrial revolution in the eighteenth century, upgrading productivity has been the focus of innovation in industry. At this stage, it has been developed to Industrial 4.0, that is, we can combine the cyber physical system and intelligent integrated sensory control system with industrial production and manufacturing, which can use the big data and cloud to make the machine tool highly automated and automatically eliminate production obstacles. In order to improve the machining accuracy and normal operation of the machine tool, we must rely on the monitoring system. Therefore, this thesis uses the experimental method to monitor the flow resistance and temperature rise of spindle coolant. A similarity method is used to establish the cooling channel, to simulate the cooling channel inside the spindle of the machine tool. Moreover, we install a pressure gauge and a flow meter to monitor the flow resistance change, in order to monitor working conditions and analyze. At the same time, the enameled wire is wound around the circulating flow channel we established, simulating the heat generated by the bearing and the coil, and attaching the thermocouple on the surface of the flow channel to observe the temperature distribution of the flow channel. Meanwhile, we also use ANSYS to simulate the wall temperature distribution, and compare the results with the actual industry reference indicators to analyze the relationship between the wall temperature and the fluid temperature of the flow channel, and determine whether the uniformity of the temperature distribution of the pipe wall can be reflected by monitoring the inlet and outlet fluid temperature difference.

    XIII 目錄 中英文摘要 ................................................................................................................................ I 誌謝 ........................................................................................................................................ XII 目錄 ....................................................................................................................................... XIII 圖目錄 .................................................................................................................................... XV 表目錄 .................................................................................................................................... XX 符號說明 .............................................................................................................................. XXI 緒論 ................................................................................................................................... 1 前言 .......................................................................................................................... 1 研究目的 .................................................................................................................. 3 研究架構 .................................................................................................................. 4 論文簡述 .................................................................................................................. 6 文獻回顧 .................................................................................................................. 7 理論背景 ......................................................................................................................... 12 管內流壓力損失 .................................................................................................... 12 管內穩態熱傳理論 ................................................................................................ 15 相似法與因次分析 ................................................................................................ 17 實驗系統建立與流程 ..................................................................................................... 18 本章介紹 ................................................................................................................ 18 泵浦循環系統 ........................................................................................................ 21 3.2.1. 壓力感測器 ....................................................................................................... 23 3.2.2. 超音波流量計與流量顯示器 ........................................................................... 24 3.2.3. 離心泵浦 ........................................................................................................... 26 3.2.4. 電源供應器 ....................................................................................................... 27 資料擷取次系統 .................................................................................................... 28 流道模型製作 ........................................................................................................ 30 3.4.1. 本節介紹 ........................................................................................................... 30 3.4.2. 流道製作流程 ................................................................................................... 33 XIV 改變流阻之方法與監控 ........................................................................................ 38 加熱實驗建立流程與實驗步驟 ............................................................................ 40 3.6.1. 漆包線圈 ........................................................................................................... 41 3.6.2. 熱電偶資料擷取器 ........................................................................................... 42 3.6.3. 實驗設計介紹 ................................................................................................... 43 3.6.4. 加熱實驗步驟 ................................................................................................... 46 實驗結果與討論 ............................................................................................................. 47 本章介紹 ................................................................................................................ 47 阻塞實驗 ................................................................................................................ 48 加熱實驗 ................................................................................................................ 51 4.3.1. 加熱進出口水溫 ............................................................................................... 53 4.3.2. 管壁溫度分布結果 ........................................................................................... 58 4.3.3. 本章結論 ........................................................................................................... 67 ANSYS模擬結果與討論 ............................................................................................... 68 本章介紹 ................................................................................................................ 68 模擬模型以及邊界條件介紹 ................................................................................ 69 模擬結果與討論 .................................................................................................... 73 5.3.1. 模擬與實驗結果討論比較 ............................................................................... 73 5.3.2. 改變加熱功率與流量討論 ............................................................................... 79 5.3.3. 本章結論 ........................................................................................................... 87 結論與未來工作 ............................................................................................................. 88 結論 ........................................................................................................................ 88 6.1.1. 流阻指標建立 ................................................................................................... 88 6.1.2. 流道溫升分析 ................................................................................................... 89 本文貢獻 ................................................................................................................ 90 未來工作與建議 .................................................................................................... 91 參考文獻 ................................................................................................................................. 92

    J. Bryan, “International status of thermal error research, ”CIRP Annals-Manufacturing Technology, vol. 39, pp. 645-656, 1990.
    [2] G. J. Cheng, L. T. Liu, X. J. Qiang, Y. Liu, “Industry 4.0 Development and Application of Intelligent Manufacturing, ”International Conference on Information System and Artificial Intelligence, June 24th – 26th, Hong Kong, pp.407-410, 2016.
    [3] H. Lasi, P. Fettke, H. G. Kemper, T. Feld, M. Hoffmann. “Industry 4.0 Business Information Systems Engineering, ”Affiliated Journals, vol. 6, p. 64, 2014.
    [4] E. Abele, Y. Altintas, C. Brecher, “Machine tool spindle units, ” CIRP Annals-Manufacturing Technology, vol. 59, pp. 781-802, 2010.
    [5] V. Nakum, K. Vyas, N. Mehta, “Research on Induction Heating, ” International Journal of Science and Engineering Applications, vol. 2, pp.141-144, 2013.
    [6] Y. H. Huang, C. W. Huang, Y. D. Chou, C. C. Ho, M. T. Lee, “An Experimental and Numerical Study of the Thermal Issues of a High-speed Built-in Motor Spindle, ” Smart Science, vol. 4, pp. 160-166, 2016.
    [7] J. Jedrzejewski, W. Kwasny, W. Modrzycki, “Limiting Precision Distortions In Spindle Unit of HSC Machining Centre, ” Journal of Machine Engineering, vol. 8, pp.44-53, 2008.
    93
    [8] B. Bossmanns, J. F. Tu, “A Thermal Model for High Speed Motorized Spindles, ” International Journal of Machine Tools and Manufacture, vol. 39, pp. 1345-1366, 1999.
    [9] T. Y. Chen, W. J. Wei, J. C. Tsai, “Optimum Design of Headstocks of Precision Lathes, ” International Journal of Machine Tools and Manufacture, vol. 39, pp. 1961-1977, 1999.
    [10] S. M. Kim, S. K. Lee, “Prediction of Thermo-Elastic Behavior in a Spindle–Bearing System Considering Bearing Surroundings,” International Journal of Machine Tools and Manufacture, vol. 41, pp. 809-831, 2001.
    [11] C. Chien, J. Y. Jang, “3-D Numerical and Experimental Analysis of a Built-in Motorized High-Speed Spindle with Helical Water Cooling Channel, ” Applied Thermal Engineering, vol. 28, pp. 2327-2336, 2008.
    [12] B. B. Mansingh, A. A. Pravin, “Simulation of Axial Cooling Loop for High Speed Spindles with Rectangular Crossection Using CFD, ” Frontiers in Automobile and Mechanical Engineering (FAME) ,Nov 25th- 27th, India, pp. 265-268, 2010.
    [13] C. Xia, J. Fu, J. Lai, X. Yao, Z. Chen, “Conjugate Heat Transfer in Fractal Tree-Like Channels Network Heat Sink for High-Speed Motorized Spindle Cooling, ” Applied Thermal Engineering, vol. 90, pp. 1032-1042, 2015.
    94
    [14] P. Hu, B. He, L. Ying, “Numerical Investigation on Cooling Performance of Hot Stamping Tool with Various Channel Designs, ” Applied Thermal Engineering, vol. 96, pp. 338-351, 2016.
    [15] B. He, L. Ying, X. Li, P. Hu, “Optimal Design of Longitudinal Conformal Cooling Channels in Hot Stamping Tools, ” Applied Thermal Engineering, vol. 106, pp. 1176-1189, 2016.
    [16] K. MadhanMuthuGanesh, N. Kamalesh, A. S. Dawood, M. Karthikeyan, “CFD Analysis of Cooling Channels in Built-in Motorized High Speed Spindle, ” Engineering Science and Technology, vol. 2, pp.238-244, 2012.
    [17] R. S. Moorthy, V. P. Raja, R. Lakshmipathi, “Analysis of High Speed Spindle with a Double Helical Cooling Channel, ” International Journal of Scientific & Engineering Research, vol. 3, pp. 1-4, 2012.
    [18] 徐子軒徐子軒,,質子交換膜燃料電池流道之壓降分析與幾何優化設計質子交換膜燃料電池流道之壓降分析與幾何優化設計,國立,國立成功大成功大學碩士論文學碩士論文, 2016.
    [19] I. C. Sun, K. S. Chen, “Development of Signal Transmission and Reduction Modules for Status Monitoring and Prediction of Machine Tools, ” Annual Conference of the Society of Instrument and Control Engineers of Japan, Sep 19th – 22th, Japan, pp.711-716, 2017
    95
    [20] UCUF-K_TG-F1020 manual, TOKYO KEISO, Retrieved on 10 March 2016 from https://www.tokyokeiso.co.jp/english/products/download/tg/UCUF-K_TG-F1020E.pdf
    [21] 翟挺翔翟挺翔,,流體循環系統濾心阻塞與清洗策略研究流體循環系統濾心阻塞與清洗策略研究: 以半導體酸槽製程為應用以半導體酸槽製程為應用標的標的,,國立成功大學碩士論文國立成功大學碩士論文, 2017.
    [22] P. Frank, “Principles of Heat and Mass Transfer, ” Seventh Edition, Wiley.

    無法下載圖示 校內:2022-01-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE