簡易檢索 / 詳目顯示

研究生: 楊姿鈴
Yang, Tzu-Ling
論文名稱: 肺癌細胞上凝血酶調節素的修飾作用調控腫瘤生長
Thrombomodulin modification regulates tumor growth in lung cancer cells
指導教授: 施桂月
Shi, Guey-Yueh
學位類別: 碩士
Master
系所名稱: 醫學院 - 生物化學暨分子生物學研究所
Department of Biochemistry and Molecular Biology
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 82
中文關鍵詞: 凝血酶調節素
外文關鍵詞: thrombomodulin
相關次數: 點閱:73下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 血纖維蛋白溶酶原激活系統是細胞表面重要的絲氨酸蛋白酶系統,其透過分解膜蛋白的功能來進一步調控細胞的爬行和腫瘤內的血管新生。許多研究指出系統當中所參與的蛋白在腫瘤惡化的過程扮演重要的角色。凝血酶調節素是一個表現在血管內皮細胞上的抗凝血因子,除此之外在許多腫瘤細胞上也有被發現。本實驗室先前的研究已證實凝血酶調節素功能區域1具有調控細胞間黏附的功能,而凝血酶調節素功能區域2和3具有促進血管新生的能力。許多研究指出凝血酶調節素的表現與腫瘤細胞的惡化具有負相關性。然而,腫瘤細胞利用抑制凝血酶調節素來促進腫瘤惡化的詳細機制仍不清楚。因此,在本篇研究裡我們擬探討血纖維蛋白溶酶原激活系統是否會去修飾剪切凝血酶調節素,釋放出凝血酶調節素的片段來促進血管新生,進一步影響腫瘤的生長。我們發現凝血酶調節素在人類肺腺癌細胞上的表現量相對於皮膚角質細胞來的低。此外,我們也發現凝血酶調節素在人類肺腺癌細胞上的表現呈現斷片的型式且在細胞培養液裡也有偵測到凝血酶調節素的片段。若把培養過人類肺腺癌細胞的培養液拿去培養牛動脈內皮細胞,會發現全長凝血酶調節素的表現明顯的下降。同時,以蛋白酶抑制劑處理人類肺腺癌細胞,可以看到在人類肺腺癌細胞裡凝血酶調節素由原本斷片形式回復成完整長度。進一步也利用不同的基質金屬蛋白酶抑制劑排除基質金屬蛋白酶參與作用的可能性。我們也偵測到纖溶酶原激活因子存在於人類肺腺癌細胞的培養基當中。以血纖維蛋白溶酶抑制劑處理人類肺腺癌細胞,觀察到凝血酶調節素由原本斷片形式回復成完整長度。另外,我們利用純化出來的凝血酶調節素與人類血纖維蛋白溶酶作用,可以發現凝血酶調節素可被切在兩個位點上。進一步我們利用核醣核酸干擾技術來抑制血纖維蛋白溶酶原、尿激酶型纖溶酶原激活因子和尿激酶型纖溶酶原激活因子受體在人類肺腺癌細胞中的表現,這些細胞的外觀變得較規則且緊密聚集在一起、全長凝血酶調節素的表現量明顯回復且腫瘤的生長受到抑制。另外,同樣利用核醣核酸干擾技術抑制凝血酶調節素的表現後,腫瘤生長的情形也有顯著的趨緩,而細胞內血管新生的情況也有明顯的減少。這些實驗結果顯示,在肺癌細胞中凝血酶調節素會被血纖維蛋白溶酶激活系統修飾剪切,進而轉換成血管新生因子來調控血管的生成,進一步幫助腫瘤生長。

    Plasminogen activator system (PAS) functions as a major serine protease system for membrane protein degradation, and participates in cell migration and tumor angiogenesis. The components of this system have been postulated to play a role in tumor progression. Thrombomodulin (TM), a well recognized anticoagulant factor in endothelium, is also expressed in a wide range of tumor cells. Previously, we have demonstrated that TM mediates cell to cell adhesion through lectin-like domain, and epidermal growth factor-like domains to serine/threonine rich domain of TM can function as an angiogenic factor. Several studies indicated that cell malignancy is negatively correlated with the expression level of TM. However, the molecular mechanism by which down-regulation of TM in cancer cells promotes tumor progression is unclear. Therefore, we hypothesized that the lower expression of TM in tumor cells could be due to protease cleavage by PAS, and the proteolytic TM fragments may promote tumor growth by enhancing tumor angiogenesis. According to the hypothesis, we generated stable knockdown of plasminogen, urokinase-type plasminogen activator (uPA), uPA receptor, and TM in A549 cells, a human lung adenocarcinoma cell line, respectively using RNA interference technology. The expression of full-length TM in A549 cells was lower in comparison with HaCaT cells. However, the cleaved form of TM was presented in A549 cells, and the TM fragments were detected in conditioned medium. When bovine aortic endothelial cells were incubated with the conditioned medium of A549 cells, the expression level of TM in bovine aortic endothelial cells decreased. After treatment with protease inhibitors cocktail, the expression of full-length TM in A549 cells was increased. The possibility of matrix metalloproteinase involved in the TM shedding was excluded after different matrix metalloproteinase inhibitors treatment. In plasminogen activator activity assay, we showed that uPA was present in A549 cells. Treatment with plasmin inhibitor resulted in an increase in full-length TM expression in A549 cells. In addition, recombinant TM could be cleaved by plasmin at two sites. The morphology of plasminogen, uPA, and uPA receptor-knockdown cells became epithelial phenotype, and strikingly, the level of full-length TM increased. In xenograft mice model, the tumor volume of these short hairpin RNA-transfected cells was significantly suppressed, and the tumor angiogenesis of sh-TM cells was significantly decreased. In conclusion, we proposed that TM is converted to an angiogenic factor after modification by PAS, and it further promotes tumor growth in lung cancer cells.

    Abstract ………………...……………………………………….…….……….... 1 Abstract in Chinese …………………………………………………….………. 3 Acknowledgments …………………………………………………………….... 4 Content Table ………………………………………………………….………... 5 Introduction 1. Tumorigenesis …………………………….…………….……..……….. 8 2. Tumor angiogenesis ……………………….…………….…………….. 9 3. The structure and function of thrombomodulin (TM) ….....….…….. 9 4. The correlation between tumor and TM …………….……..………. 10 5. Plasminogen activator system (PAS) ………….…….……….……... 11 A. Plasminogen (Plg) ……………………….……………….……...……. 11 B. Plasmin ……………………………….………………….…………..... 12 C. Urokinase-type plasminogen activator (uPA) ………….………….. 12 D. Urokinase-type plasminogen activator receptor (uPAR) …....……. 13 6. Matrix metalloproteinases (MMPs) ……………………….……..….. 14 7. Objective of the study ………………….…………………....…..….. 15 Materials and Methods Cell culture …………………………………….………………….……..…….. 17 Gel electrophoresis and Western blotting…………………….….…………. 20 A. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) ………....………………….………………….…...…….. 20 B. Semi-dry transfer …………………….………………….…...………. 22 C. Immunoblotting …………………….………………….………..…….. 22 Coomassie blue staining …………………...……..……………….…………. 23 Ribonucleic acid (RNA) extraction, reverse transcriptase-polymerase chain reaction (RT-PCR), and PCR ……………………………………………….…. 24 A. RNA extraction ……………………….………………….………..…. 24 B. RT-PCR ……………………………………………………………….... 25 C. PCR ……………………………………………………….………...…. 26 Preparation of the membrane fraction of cells ……………………………. 28 Condensation of the conditioned medium of cells ………………………... 29 Gelatin zymography assay …………………………….………………….…. 30 Assay of TM expression level ………………………………………….…..... 32 Plasminogen activator activity assay ………………………….……………. 33 Digestion of recombinant TMD123 by plasmin in vitro ……………….…. 34 Knockdown the expression of TM, Plg, uPA, uPAR in A549 cells ..……. 35 A. Anneal oligonucleotides ……………………………………………... 35 B. Linearize the vector …………………………….………………….…. 36 C. Ligation into pSUPERIOR.retro vector …………………………..….. 36 D. Transformation in bacteria …………………………….………...….. 37 E. Co-transfection of mammalian cells with LipofectamineTM 2000 . 38 F. Selection of stable transfectants ………………..……….………….. 40 In vivo tumor growth assay …………………………….………………….... 40 Protein concentration ………………….………………….…………………... 41 Animal care ……………………….………………….……………………..… 41 Statistical analysis ……………………….………………….………………... 41 Results 1. The expression level of TM in A549 and HaCaT cells ……….….. 42 2. The conditioned medium of A549 cells induces TM shedding in BAECs …………………...………………….…………………………. 42 3. Protease inhibitor induces a dose- and time-dependent increase in TM level in A549 cells ……….………………………,,………,……. 43 4. MMP inhibitors have no effect on TM level in A549 cells ………. 43 5. PAS is activation in A549 cells ………………………………......… 44 6. Plasmin is able to cleave recombinant TMD123 directly at two major sites …………………………………………………………….. 44 7. Knockdown of Plg, uPA, or uPAR expression results in changes in cell morphology and TM expression in A549 cells ………………. 45 8. Tumor growth is suppressed after knockdown the expression of Plg, uPA, or uPAR in A549 cells …………………….………….…. 45 9. Knockdown of TM expression in A549 cells ……………………... 46 10. Tumor growth is suppressed after knockdown the expression of TM in A549 cells …………………….…………………………………… 46 11. Tumor angiogenesis is significantly decreased after knockdown the expression of TM in A549 cells ……………….………....…….….. 47 Discussion …………………….……………….………………………………. 48 References ………………….………………….………………………………. 53 Figures 1. Cleaved form of TM exists in A549 cells. ……………….………... 58 2. The conditioned medium of A549 cells induces TM, not VE-cadherin shedding in BAECs. ……………….………………….. 59 3. Effect of protease inhibitor cocktail on TM level. ……….…….…. 60 4. Effect of MMP inhibitors on TM level. ……………….……………. 61 5. A549 cells have the ability to release Plg and PAs. ……………. 62 6. rTMD123 is proteolytic processed after exposing to plasmin. …. 63 7. Knockdown of Plg, uPA, or uPAR expression in A549 cells results in phenotypic change and an increase in TM expression. ……... 64 8. Knockdown of Plg, uPA, or uPAR expression in A549 cells results in antitumor activity in lung cancer xenograft tumor model. ….. 65 9. Knockdown of TM expression in A549 cells. ……………….……. 66 10. Knockdown of TM expression in A549 cells results in antitumor activity in lung cancer xenograft tumor model. ……….…………. 67 11. Tumor angiogenesis is significantly decreased after knockdown the expression of TM in A549 cells. ……………………………………. 68 12. The possible role of TM in A549 cells. ……………….………...…. 69 Appendixes 1. The structure of TM ….………………….……………………………. 70 2. Fibrinolysis ……………….………………….………………………... 71 3. Map of pSUPERIOR.retro.neo + gfp ……………….……………….. 72 4. Primers and primer sequences for PCR ……….………………....... 73 5. shRNA sequences ……….………….……………………………….... 74 6. Abbreviations ……………….………….……………………………... 75 7. Reagents ……………….………………….…………………………... 77 8. Instrumemts …….……………………..………………………………. 80 Author’s Resume ……………….……………….…………………………... 82

    1. Kung HC, Hoyert DL, Xu J, Murphy SL. Deaths: final data for 2005. Natl Vital Stat Rep. 2008; 56: 1-120.
    2. Dass K, Ahmad A, Azmi AS, Sarkar SH, Sarkar FH. Evolving role of uPA/uPAR system in human cancers. Cancer Treat Rev. 2008; 34: 122-36.
    3. Anderson RN, Smith BL. Deaths: leading causes for 2001. Natl Vital Stat Rep. 2003; 52: 1-85.
    4. Heron M. Deaths: leading causes for 2004. Natl Vital Stat Rep. 2007; 56: 1-95.
    5. Andreasen PA, Kjoller L, Christensen L, Duffy MJ. The urokinase-type plasminogen activator system in cancer metastasis: a review. Int J Cancer. 1997; 72: 1-22.
    6. McMahon B, Kwaan HC. The plasminogen activator system and cancer. Pathophysiol Haemost Thromb. 2008; 36: 184-94.
    7. McMahon GA, Petitclerc E, Stefansson S, Smith E, Wong MK, Westrick RJ, Ginsburg D, Brooks PC, Lawrence DA. Plasminogen activator inhibitor-1 regulates tumor growth and angiogenesis. J Biol Chem. 2001; 276: 33964-8.
    8. Folkman J. Role of angiogenesis in tumor growth and metastasis. Semin Oncol. 2002; 29: 15-8.
    9. Suzuki K, Kusumoto H, Deyashiki Y, Nishioka J, Maruyama I, Zushi M, Kawahara S, Honda G, Yamamoto S, Horiguchi S. Structure and expression of human thrombomodulin, a thrombin receptor on endothelium acting as a cofactor for protein C activation. EMBO J. 1987; 6: 1891-7.
    10. Weiler H, Isermann BH. Thrombomodulin. J Thromb Haemost. 2003; 1: 1515-24.
    11. Esmon CT. The roles of protein C and thrombomodulin in the regulation of blood coagulation. J Biol Chem. 1989; 264: 4743-6.
    12. Healy AM, Rayburn HB, Rosenberg RD, Weiler H. Absence of the blood-clotting regulator thrombomodulin causes embryonic lethality in mice before development of a functional cardiovascular system. Proc Natl Acad Sci U S A. 1995; 92: 850-4.
    13. Huang HC, Shi GY, Jiang SJ, Shi CS, Wu CM, Yang HY, Wu HL. Thrombomodulin-mediated cell adhesion: involvement of its lectin-like domain. J Biol Chem. 2003; 278: 46750-9.
    12. M305216200 [pii].
    14. Hosaka Y, Higuchi T, Tsumagari M, Ishii H. Inhibition of invasion and experimental metastasis of murine melanoma cells by human soluble thrombomodulin. Cancer Lett. 2000; 161: 231-40.
    15. Matsushita Y, Yoshiie K, Imamura Y, Ogawa H, Imamura H, Takao S, Yonezawa S, Aikou T, Maruyama I, Sato E. A subcloned human esophageal squamous cell carcinoma cell line with low thrombomodulin expression showed increased invasiveness compared with a high thrombomodulin-expressing clone--thrombomodulin as a possible candidate for an adhesion molecule of squamous cell carcinoma. Cancer Lett. 1998; 127: 195-201.
    16. Shi CS, Shi GY, Chang YS, Han HS, Kuo CH, Liu C, Huang HC, Chang YJ, Chen PS, Wu HL. Evidence of human thrombomodulin domain as a novel angiogenic factor. Circulation. 2005; 111: 1627-36.
    17. Kim SJ, Shiba E, Ishii H, Inoue T, Taguchi T, Tanji Y, Kimoto Y, Izukura M, Takai S. Thrombomodulin is a new biological and prognostic marker for breast cancer: an immunohistochemical study. Anticancer Res. 1997; 17: 2319-23.
    18. Suehiro T, Shimada M, Matsumata T, Taketomi A, Yamamoto K, Sugimachi K. Thrombomodulin inhibits intrahepatic spread in human hepatocellular carcinoma. Hepatology. 1995; 21: 1285-90.
    19. Tabata M, Sugihara K, Yonezawa S, Yamashita S, Maruyama I. An immunohistochemical study of thrombomodulin in oral squamous cell carcinoma and its association with invasive and metastatic potential. J Oral Pathol Med. 1997; 26: 258-64.
    20. Hanly AM, Redmond M, Winter DC, Brophy S, Deasy JM, Bouchier-Hayes DJ, Kay EW. Thrombomodulin expression in colorectal carcinoma is protective and correlates with survival. Br J Cancer. 2006; 94: 1320-5.
    21. Tezuka Y, Yonezawa S, Maruyama I, Matsushita Y, Shimizu T, Obama H, Sagara M, Shirao K, Kusano C, Natsugoe S, et al. Expression of thrombomodulin in esophageal squamous cell carcinoma and its relationship to lymph node metastasis. Cancer Res. 1995; 55: 4196-200.
    22. Ogawa H, Yonezawa S, Maruyama I, Matsushita Y, Tezuka Y, Toyoyama H, Yanagi M, Matsumoto H, Nishijima H, Shimotakahara T, Aikou T, Sato E. Expression of thrombomodulin in squamous cell carcinoma of the lung: its relationship to lymph node metastasis and prognosis of the patients. Cancer Lett. 2000; 149: 95-103.
    23. Furuta J, Kaneda A, Umebayashi Y, Otsuka F, Sugimura T, Ushijima T. Silencing of the thrombomodulin gene in human malignant melanoma. Melanoma Res. 2005; 15: 15-20.
    24. Nakano M, Furutani M, Hiraishi S, Ishii H. Characterization of soluble thrombomodulin fragments in human urine. Thromb Haemost. 1998; 79: 331-7.
    25. Edano T, Komine N, Yoshizaki H, Ohkuchi M. Protein C activation by recombinant thrombomodulin in plasma. Biol Pharm Bull. 1998; 21: 177-9.
    26. Ishii H, Majerus PW. Thrombomodulin is present in human plasma and urine. J Clin Invest. 1985; 76: 2178-81.
    27. Boehme MW, Galle P, Stremmel W. Kinetics of thrombomodulin release and endothelial cell injury by neutrophil-derived proteases and oxygen radicals. Immunology. 2002; 107: 340-9.
    28. Lindahl AK, Boffa MC, Abildgaard U. Increased plasma thrombomodulin in cancer patients. Thromb Haemost. 1993; 69: 112-4.
    29. Lohi O, Urban S, Freeman M. Diverse substrate recognition mechanisms for rhomboids; thrombomodulin is cleaved by Mammalian rhomboids. Curr Biol. 2004; 14: 236-41.
    30. Fay WP, Garg N, Sunkar M. Vascular functions of the plasminogen activation system. Arterioscler Thromb Vasc Biol. 2007; 27: 1231-7.
    31. Cesarman-Maus G, Hajjar KA. Molecular mechanisms of fibrinolysis. Br J Haematol. 2005; 129: 307-21.
    32. Dano K, Andreasen PA, Grondahl-Hansen J, Kristensen P, Nielsen LS, Skriver L. Plasminogen activators, tissue degradation, and cancer. Adv Cancer Res. 1985; 44: 139-266.
    33. Cajot JF, Schleuning WD, Medcalf RL, Bamat J, Testuz J, Liebermann L, Sordat B. Mouse L cells expressing human prourokinase-type plasminogen activator: effects on extracellular matrix degradation and invasion. J Cell Biol. 1989; 109: 915-25.
    34. Holst-Hansen C, Johannessen B, Hoyer-Hansen G, Romer J, Ellis V, Brunner N. Urokinase-type plasminogen activation in three human breast cancer cell lines correlates with their in vitro invasiveness. Clin Exp Metastasis. 1996; 14: 297-307.
    35. Caiolfa VR, Zamai M, Malengo G, Andolfo A, Madsen CD, Sutin J, Digman MA, Gratton E, Blasi F, Sidenius N. Monomer dimer dynamics and distribution of GPI-anchored uPAR are determined by cell surface protein assemblies. J Cell Biol. 2007; 179: 1067-82.
    36. Reiter LS, Kruithof EK, Cajot JF, Sordat B. The role of the urokinase receptor in extracellular matrix degradation by HT29 human colon carcinoma cells. Int J Cancer. 1993; 53: 444-50.
    37. Schlechte W, Murano G, Boyd D. Examination of the role of the urokinase receptor in human colon cancer mediated laminin degradation. Cancer Res. 1989; 49: 6064-9.
    38. Kwaan HC. The plasminogen-plasmin system in malignancy. Cancer Metastasis Rev. 1992; 11: 291-311.
    39. Rundhaug JE. Matrix metalloproteinases, angiogenesis, and cancer: commentary re: A. C. Lockhart et al., Reduction of wound angiogenesis in patients treated with BMS-275291, a broad spectrum matrix metalloproteinase inhibitor. Clin. Cancer Res., 9: 00-00, 2003. Clin Cancer Res. 2003; 9: 551-4.
    40. Birkedal-Hansen H. Proteolytic remodeling of extracellular matrix. Curr Opin Cell Biol. 1995; 7: 728-35.
    41. Chambers AF, Matrisian LM. Changing views of the role of matrix metalloproteinases in metastasis. J Natl Cancer Inst. 1997; 89: 1260-70.
    42. Liotta LA, Steeg PS, Stetler-Stevenson WG. Cancer metastasis and angiogenesis: an imbalance of positive and negative regulation. Cell. 1991; 64: 327-36.
    43. MacDougall JR, Matrisian LM. Contributions of tumor and stromal matrix metalloproteinases to tumor progression, invasion and metastasis. Cancer Metastasis Rev. 1995; 14: 351-62.
    44. Stamenkovic I. Matrix metalloproteinases in tumor invasion and metastasis. Semin Cancer Biol. 2000; 10: 415-33.
    45. Shi GY, Hau JS, Wang SJ, Wu IS, Chang BI, Lin MT, Chow YH, Chang WC, Wing LY, Jen CJ, et al. Plasmin and the regulation of tissue-type plasminogen activator biosynthesis in human endothelial cells. J Biol Chem. 1992; 267: 19363-8.
    46. Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970; 227: 680-5.
    47. Lee OH, Bae SK, Bae MH, Lee YM, Moon EJ, Cha HJ, Kwon YG, Kim KW. Identification of angiogenic properties of insulin-like growth factor II in in vitro angiogenesis models. Br J Cancer. 2000; 82: 385-91.
    48. Cao Y, O'Reilly MS, Marshall B, Flynn E, Ji RW, Folkman J. Expression of angiostatin cDNA in a murine fibrosarcoma suppresses primary tumor growth and produces long-term dormancy of metastases. J Clin Invest. 1998; 101: 1055-63.
    49. Carmeliet P. Angiogenesis in health and disease. Nat Med. 2003; 9: 653-60.
    50. Folkman J, Shing Y. Angiogenesis. J Biol Chem. 1992; 267: 10931-4.
    51. Yancopoulos GD, Davis S, Gale NW, Rudge JS, Wiegand SJ, Holash J. Vascular-specific growth factors and blood vessel formation. Nature. 2000; 407: 242-8.
    52. Hanahan D, Folkman J. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell. 1996; 86: 353-64.
    53. Paez-Ribes M, Allen E, Hudock J, Takeda T, Okuyama H, Vinals F, Inoue M, Bergers G, Hanahan D, Casanovas O. Antiangiogenic therapy elicits malignant progression of tumors to increased local invasion and distant metastasis. Cancer Cell. 2009; 15: 220-31.
    54. Morimoto K, Mishima H, Nishida T, Otori T. Role of urokinase type plasminogen activator (u-PA) in corneal epithelial migration. Thromb Haemost. 1993; 69: 387-91.
    55. Ossowski L. Invasion of connective tissue by human carcinoma cell lines: requirement for urokinase, urokinase receptor, and interstitial collagenase. Cancer Res. 1992; 52: 6754-60.
    56. Quattrone A, Fibbi G, Anichini E, Pucci M, Zamperini A, Capaccioli S, Del Rosso M. Reversion of the invasive phenotype of transformed human fibroblasts by anti-messenger oligonucleotide inhibition of urokinase receptor gene expression. Cancer Res. 1995; 55: 90-5.
    57. Wilhelm O, Schmitt M, Hohl S, Senekowitsch R, Graeff H. Antisense inhibition of urokinase reduces spread of human ovarian cancer in mice. Clin Exp Metastasis. 1995; 13: 296-302.

    無法下載圖示 校內:2020-12-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE