| 研究生: |
王彩妮 Wang, Tsai-Ni |
|---|---|
| 論文名稱: |
高效率四波混頻介質的準相位匹配慢光傳播 Quasi-phase-matching slow light propagation in efficient four-wave mixing media |
| 指導教授: |
陳泳帆
Chen, Yong-Fan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 物理學系 Department of Physics |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 88 |
| 中文關鍵詞: | 電磁波引發透明 、量子干涉 、四波混頻 、平衡條件 、相位不匹配 、量子轉頻器 |
| 外文關鍵詞: | ectromagnetically induced transparency, quantum interference, four-wave mixing, balance condition, phase mismatching, quantum frequency converter |
| 相關次數: | 點閱:188 下載:39 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
我們的實驗使用反向雙Lambda型四波混頻,將一道波長780奈米的同調光,轉換為波長795奈米的同調光,並利用暗區自發力陷阱增大光學密度,以及利用調整雙光子調變達到準相位匹配的條件,最終在光學密度130的條件下,觀察到91.2%的轉換效率,證明此種系統可以實現高效率的頻率轉換。本篇論文先以理論角度討論四波混頻,比較不同的四波混頻轉頻系統並解釋我們為何選擇反向四波混頻,最後會說明我們在實驗上的觀察。
Quantum frequency converter which can maintain the state of quantum bits during conversion is an important device in optical quantum information process. In this thesis, we theoretically study the efficient four-wave mixing scheme based on electromagnetically induced transparency (EIT), including detuned four-wave mixing, spatially modulated four-wave mixing and backward four-wave mixing, then explain why we choose backward scheme to carry out wavelength conversion. After compensating phase mismatching by adjusting two photon detuning, we have observed 91.2% conversion efficiency (CE) using quasi-phase matching backward four-wave mixing scheme at an optical depth of 130 in cold rubidium atoms, which is almost the same as the theoretical prediction. Thus, this scheme has been confirm to be a highly potential way to realized quantum frequency converter.
[1] Michael G. Raymer and Kartik Srinivasan. Manipulating the color and shape of single photons. Physics Today, 65, 11:32, 2012.
[2] H. J. Kimble. The quantum internet. Nature, 453:1023-1030, 2008.
[3] S. Tanzilli, W. Tittel, M. Halder, O. Alibart, P. Baldi, N. Gisin, and H. Zbinden. A photonic quantum information interface. Rev. Mod. Phys., 453:Nature, 2005.
[4] R. Zhao, Y. O. Dudin, S. D. Jenkins, C. J. Campbell, D. N. Matsukevich, T. A. B. Kennedy, and A. Kuzmich. Long-lived quantum memory. Nature Physics, 5:100–104, 2009.
[5] Cyril Laplane, Pierre Jobez, Jean Etesse, Nicolas Gisin, and Mikael Afzelius. Multimode and long-lived quantum correlations between photons and spins in a crystal. Physical review letters, 118(21):210501, May 2017.
[6] Yoshiaki Tamura, Hirotaka Sakuma, Keisei Morita, Masato Suzuki, Yoshinori Yamamoto, Kensaku Shimada, Yuya Honma, Kazuyuki Sohma, Takashi Fujii, and Takemi Hasegawa. Lowest-ever 0.1419-db/km loss optical fiber. In Optical Fiber Communication Conference Postdeadline Papers, page Th5D.1, 2017.
[7] Prem Kumar. Quantum frequency conversion. Opt. Lett., 15:1476–1478, Dec 1990.
[8] Nicolas Maring, Dario Lago-Rivera, Andreas Lenhard, Georg Heinze, and Hugues de Riedmatten. Quantum frequency conversion of memory-compatible single photons from 606 nm to the telecom c-band. Optica, 5(5):507–513, May 2018.
[9] Marius A. Albota and Franco N. C. Wong. Efficient single-photon counting at 1.55 μm by means of frequency upconversion. Opt. Lett., 29(13):1449–1451, Jul 2004.
[10] C. J. McKinstrie, J. D. Harvey, S. Radic, and M. G. Raymer. Translation of quantum states by four-wave mixing in fibers. Opt. Express, 13(22):9131–9142, Oct 2005.
[11] J. S. Pelc, L. Ma, C. R. Phillips, Q. Zhang, C. Langrock, O. Slattery, X. Tang, and M. M. Fejer. Opt. Express.
[12] S. E. Harris, J. E. Field, and A. Imamoğlu. Nonlinear optical processes using electromagnetically induced transparency. Phys. Rev. Lett., 64:1107–1110, Mar 1990.
[13] Chang-Kai Chiu. Studies on eit-based four-wave mixing at low light levels. Master Thesis, NCKU, 2013.
[14] Jz-Yuan Juo, Jia-Kang Lin, Chin-Yao Cheng, Zi-Yu Liu, Ite A. Yu, and Yong-Fan Chen. Demonstration of spatial-light-modulation-based four-wave mixing in cold atoms. Phys. Rev. A, 97:053815, May 2018.
[15] Zi-Yu Liu, Jian-Ting Xiao, Jia-Kang Lin, Jun-Jie Wu, Jz-Yuan Juo, Chin-Yao Cheng, and Yong-Fan Chen. High-efficiency backward four-wave mixing by quantum interference. In Scientific Reports, 2017.
[16] Marlan O. Scully and M. Suhail Zubairy. Quantum Optics. Cambridge University Press, 1997.
[17] Agarwal GS. Jyotsna IV IV. Coherent population trapping at low light levels. volume 52(4), pages 3147-3152, 2017.
[18] M. Fleischhauer and M. D. Lukin. Dark-state polaritons in electromagnetically induced transparency. Physical Review Letters, 84:5094–5097, 2000.
[19] W. M. Itano F. L. Moore D. J. Wineland, J. J. Bollinger and D. J. Heinzen. Spin squeezing and reduced quantum noise in spectroscopy. Phys. Rev. A, 46:R6797(R), 1992.
[20] A. G. Radnaev, Y. O. Dudin, R. Zhao, H. H. Jen, S. D. Jenkins, A. Kuzmich, and T. A. B. Kennedy. A quantum memory with telecom-wavelength conversion. Nature Physics, 6:894–899, 2010.
[21] Zi-Yu Liu, Yi-Hsin Chen, Yen-Chun Chen, Hsiang-Yu Lo, Pin-Ju Tsai, Ite A. Yu, Ying-Cheng Chen, and Yong-Fan Chen. Large cross-phase modulations at the few-photon level. Phys. Rev. Lett., 117:203601, Nov 2016.
[22] Bo-Han Wu. Studies of transient effects from single-Λ to double-Λ systems under the all-resonant condition. Master Thesis, NTHU, 2014.
[23] Steven Chu, L. Hollberg, J. E. Bjorkholm, Alex Cable, and A. Ashkin. Threedimensional viscous confinement and cooling of atoms by resonance radiation pressure. Phys. Rev. Lett., 55:48–51, 1985.
[24] Wolfgang Ketterle, Kendall B. Davis, Michael A. Joffe, Alex Martin, and David E. Pritchard. High densities of cold atoms in a dark spontaneous-force optical trap. Phys. Rev. Lett., 70:2253–2256, 1993.