| 研究生: |
陳俞旭 CHEN, Yu-Shiu |
|---|---|
| 論文名稱: |
地震對崩塌與土石流發生影響之研究 An Influence of Earthquake on the Occurrence of Landslide and Debris Flow |
| 指導教授: |
謝正倫
SHIEH, Chjeng-Lun |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 水利及海洋工程學系 Department of Hydraulic & Ocean Engineering |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 248 |
| 中文關鍵詞: | 地震 、崩塌 、土石流 |
| 外文關鍵詞: | Landslide, Debris Flow, Earthquake |
| 相關次數: | 點閱:93 下載:18 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
台灣因特殊的地文與水文條件,同時具有大規模地震及高強度暴雨兩種崩塌誘發因子,造成山區嚴重的崩塌災害,並誘發後續嚴重的土石流運動。本研究以台灣百年最大之 921 集集地震為例,討論地震對於崩塌與土石流發生的影響,並持續分析震後逐年的變遷過程。
在崩塌發生特性的分析上,本研究採用福爾摩沙二號衛星影像,進行各幅影像間的校正工作,及崩塌誤判參考資料庫的修正,改進現有之衛星影像判釋精度,並以機率分布定量說明崩塌因子的特性轉變,其成果表示,崩塌坡度因子以 Weibull 機率分布為最佳分布型態,地震誘發之崩塌與降雨誘發崩塌相較,其 90% 發生區間上升約 5 度,偏態係數由正值轉為負值,表示機率分布型態向右側偏移,資料出現在高坡度的機率高於低坡度區域。且地震所誘發的崩塌地多出現於地表最大加速度的方向,與降雨多出現在迎風坡面的方向的成果不同,但在崩塌地質與高程因子的改變較不明顯,主要仍受到最大地表加速度分布的影響。
在土石流發生特性的分析中,本研究設置土石流現場觀測系統,並依據土石流發生之時間與位置,設置土石流臨界降雨基準線,其成果顯示,土石流的降雨門檻在地震之後的第一年急遽下降,其最大有效降雨量僅需地震前的 1/4,但此基準門檻隨著時間逐年回升,至 2006 年底,降雨門檻已經恢復至震前的 1/2。根據現場觀測與測量之成果,基準的變動與土石流發生區溪床上堆積土方量有直接的關係,地震時因新增崩塌帶來大量土砂,供應土石流發生所需之材料,降低土石流發生所需之降雨門檻,但隨時間推演,土砂材料因土石流運動之搬運而逐漸輸送至下游,無法供應土石流所需之土砂材料,故土石流臨界降雨基準線也隨之回升。
為討論土石流發生降雨門檻變遷與土砂材料堆積量間之關係,本研究修正 Takahashi 提出之土石流發生理論,推求高濃度濁水下,土石流發生臨界破壞水深的改變,其成果顯示,由於地震誘發崩塌所帶來的大量細微土砂顆粒,與逕流混和後形成高濃度含砂水流,降低溪床破壞所需之臨界水深,並由粒徑分析驗證理論之成果,說明地震後土石流發生降雨門檻降低的主要原因。
In Taiwan, both catastrophic earthquake and heavy rainfall are two triggering factors to cause landslides in mountainous area. The sediment materials caused serious debris flows in the subsequent typhoon season. Example for the Chi-Chi earthquake, this research discusses the influence of earthquake on the occurrence of landslide and debris flow, and analyzes the variation after the earthquake.
The FORMOSAT-II satellite images are applied to analyze the landslide characteristics. Spatial correction, unconfidence area confirmation, and improper area modification are proceeded to improve the precision of landslide areas. And the probability distributions are applied to analyze the variation of landslide characteristics. The result shows that the Weibull probability distribution is the best distribution to present the slope of landslide areas. The 90% confidence interval of earthquake caused landslides is greater than the rainfall caused ones, and the skewness is also varied from negative to positive. Both the results show that the slope of earthquake caused landslide areas is greater than rainfall caused ones. Furthermore, earthquake caused landslides mostly occurred on the aspects of major peak ground acceleration, but rainfall caused landslides mostly happened on the windward side of hills. The geology and elevation variations of landslides are not apparent.
This research also sets two observation system to analyze the debris flow characteristics. The critical rainfall threshold of debris flow is also established by the observation data. The result shows that the rainfall threshold was decreased suddenly in the first year after the Chi-Chi earthquake. The max effective precipitation was only 1/4 of the original one before the earthquake. However, this threshold was recovered with time. In the end of 2006, the max effective precipitation was recovered the 1/2 already. According to the observation data, the threshold variation was related to the deposited sediment materials in the watershed. Plenty of sediments, which were yield by earthquake caused landslides, provide the major materials to debris flow. So the rainfall threshold was lowered rapidly. But these sediments were transported to the downstream by debris flows or high concentration flows with time. The amount of sediment was too less to trigger a debris flow. And the rainfall threshold was recovered due to this phenomenon.
In order to discuss the relationship between rainfall threshold of debris flow and amount of sediment materials, this research modifies the occurring mechanism of debris flow by Takahashi. The variation of critical water depth to trigger a debris flow is derived under different concentration runoffs. The result shows that the runoff density after the Chi-Chi earthquake was increased because of fine particles. This high concentration runoff decreased the critical water depth to trigger a debris flow. This result can be explained well by the analysis of sediment size distribution, and also accounts for the threshold variation before and after the earthquake.
1. 中華水土保持學會,行政院農業委員會水土保持技術規範,2000。
2. 王敦儀,應用GIS於台灣地區土壤沖蝕潛勢之研究,國立中興大學水土保持學系碩士論文,2002。
3. 孔德懷,「崩塌地特性變遷偵測之探討-以清水溪集水區之六期影像應用為例」,國立中興大學水土保持學系碩士論文,2005。
4. 伍啟維,水庫永續利用之入流泥砂量探討,中興大學水土保持學系碩士論文,2000。
5. 地震地質與活動斷層調查,經濟部中央地質調查所,2004
6. 吳佐川,臺灣地區崩塌地區域特性之研究,國立台灣大學森林研究所碩士論文,115頁,1993。
7. 何智武,台灣河川上游集水區之泥砂來源與控制,中華水土保持學報,15(1,2) : 第15-25頁,1984。
8. 李明熹,土石流發生降雨警戒分析及其應用,成功大學水利及海洋工程學系博士論文,2006。
9. 李振裕,集水區水砂生產及輸送之整合研究,國立成功大學水利及海洋工程研究所碩士論文,2004。
10. 李森吉,使用衛星影像作山區中大規模崩塌地之辨識,國立成功大學資源工程系碩士論文,104頁,1992。
11. 李錦育,台灣崩塌地調查研究方法綜述,山地學報,2003。
12. 林俐玲、林文英,水蝕推估模式WEPP之評估與驗證,中華水土保持學報,28(2),第145-156頁,1997。
13. 林美聆、王幼行,地表水及地下水對土石流破壞型態之影響, 地工技術 74, pp.29~38,1999。
14. 林炳森、馮賜陽、李俊明, 礫石層土石流發生之研究,中華水土保持學報 24(1),pp.55~64,1993。
15. 林建仲,土石流發生特性之初步研究, 成功大學水利及海洋工程學系碩士論文,1999。
16. 柯欽彬,擬似定量流與變量流模擬在台灣河川適用性之討論,逢甲大學土木及水利工程研究所碩士論文,2003。
17. 洪毓華,AGNPS應用在小集水區推估土壤流失量與逕流量之探討,國立中興大學水土保持學系碩士論文,1991。
18. 張子瑩,降雨與地震對形成崩塌區位之比較研究-以陳有蘭溪為例,國立台灣大學地理環境資源學所,2002。
19. 張子瑩、徐美玲,“暴雨與地震觸發崩塌發生區位之比較 以陳有蘭溪流域為例” 地理學報,第三十五期,p1-p16,2004。
20. 國立中央大學太空及遙測研究中心,中央大學太空及遙測研究中心使用者手冊,國立中央大學太空及遙測研究中心,2005。
21. 康恬慎,「石門水庫集水區不同時期崩塌地調查成果分析」,國立台灣大學森林學研究所碩士論文,2001。
22. 陳晉琪,土石流發生條件及機率之研究,成功大學水利及海洋工程學系博士論文,2000。
23. 連恵邦、趙世照,溪床堆積土體崩壞模式及其土石流化之研究, 中華水土保持學報 27(3), pp.175~183,1996。
24. 黃宏斌,非飽和堆積層土石流發生之臨界角度與含水量之關係研究, 中華水土保持學報 24(1), pp.21~27,1993。
25. 黃婷卉,土石流發生降雨特性之研究-以陳有蘭溪流域為主,國立成功大學水利及海洋工程研究所碩士論文,P.5-6,2002。
26. 黃筱梅,SPOT衛星影像於裸露地變遷之偵測研究—以和社地區為例,國立臺灣大學森林學研究所碩士論文,82頁,2001。
27. 游繁結,土石流之基礎研究 (I), 土石流發生機制之研究,中華水土保持學報 18(2),pp.28~40,1987。
28. 農委會林務局東勢林區管理處,烏石坑流域土砂觀測計畫報告,2004。
29. 鄒恬慈,集集地震引發崩山之地貌分析-以清水溪集水區為例,國立臺灣大學地理學研究所碩士論文,106,2001。
30. 經濟部水資源局,流域土砂管理模式之研究計畫報告,2002。
31. 廖軒吾,集集地震誘發之山崩,國立中央大學應用地質研究所碩士論文,90頁,2000。
32. 蔡元芳,土石流扇狀地特性之研究,國立成功大學水利及海洋工程研究所博士論文,1999。
33. 劉守恆,衛星影像於崩塌地自動分類組合之研究,國立成功大學地球科學研究所碩士論文,2002。
34. 蔣先覺、陳尊賢,台灣森林土壤調查報告,省林業試驗所,1998。
35. 劉晃丞,應用高程差與福衛二號影像共同判釋新崩塌地,國立成功大學地球科學所碩士論文,2006。.
36. 劉進金,山崩之遙測影像自動分析,遙感探測第八期,頁60-90,1987。
37. 劉進金、張寶堂,大型山崩之遙測辨認,遙感探測第十四期,頁41-68,1991。
38. 歐陽元淳,水庫集水區土壤沖蝕之研究-以石門、翡翠水庫為例,國立臺灣大學地理環境資源研究所碩士論文,2003。
39. 鄭瑞昌、江永哲,土石流發生特性之初步研究, 中華水土保持學報 17(2), pp.50~69,1986。
40. 鄧學謙,半三維崩塌機制研究,中興大學水土保持學系碩士論文,1998。
41. 謝正倫,鳳義水源地土石防治整體治理規劃工程 期末報告書,成大防災研究中心,2001。
42. 謝佳玲,不同土壤沖蝕模式推估土壤流失量之比較,國立中興大學水土保持學系碩士論文,1999。
43. 蕭國鑫、尹承遠、劉進金、游明芳、王晉倫,SPOT 影像與航照資料應用於崩塌地判識之探討,航測及遙測學刊,第八卷,第四期,29-42 頁,2003。
44. 戴德潤,利用SPOT衛星影像作中橫公路沿線附近大規模崩塌地辨認方法之初步研究,國立成功大學資源工程系碩士論文,95頁,1990。
45. 簡世宏, SPOT 衛星遙測影像與DEM 應用於崩塌地潛勢分析之研究-以清水溪集水區為例,國立中興大學水土保持學系碩士論文,2004。
46. 簡如宏,台灣集水區土壤沖蝕推估指標模式之建立,國立中興大學水土保持學系碩士論文,1996。
47. 簡鉦哲,地文性土壤沖淤模式之研究,國立成功大學水利及海洋工程研究所碩士論文,2001。
48. 顏宏宇, LiDAR 直接測量數值地型資料精度分析與應用,國立成功大學地球科學所碩士論文,2005。
49. Abdallah, C.; Chorowicz, J.; Bou Kheir, R.; Khawlie, M.,Detecting major terrain parameters relating to mass movements’ occurrence using GIS, remote sensing and statistical correlations, case study Lebanon.,Remote Sensing of Environment, v 99, n 4, Dec 15, 2005, p 448-461
50. Acharya, G.; De Smedt, F.; Long, N.T.,Landslide hazard spatial analysis and prediction using GIS in the Xiaojiang watershed, Yunnan, China.,Engineering Geology, v 76, n 1-2, December, 2004, Engineering Geology in China, p 109-128
51. Acharya, G.; De Smedt, F.; Long, N.T.,Assessing landslide hazard in GIS: A case study from Rasuwa, Nepal.,Bulletin of Engineering Geology and the Environment, v 65, n 1, March, 2006, p 99-107
52. Ashida; Egashira; Ohtsuki, Dynamic behavior of a soil mass produced by slope failure, Annuals, Disaster Prevention Res. Inst.,Kyoto Univ.,No.26-B2, pp.315~327, 1983.
53. Ashida; Egashira; Kamiya; Sasaki, The friction law and moving velocity of a soil block on slopes, Annuals, Disaster Prevention Res. Inst. Kyoto Univ.,No.28-B2, pp.297~307, 1985.
54. Ayalew, L.; Yamagishi, H.,The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko Mountains, Central Japan.,Geomorphology, v. 65, iss. 1-2, p. 15-31.
55. Ayalew, L.; Yamagishi, H.; Marui, H.; Kanno, T.,Landslides in Sado Island of Japan: Part II. GIS-based susceptibility mapping with comparisons of results from two methods and verifications.,Engineering Geology, v 81, n 4, November, 2005, p 432-445
56. Bennett, J.P., “Concepts of mathematical modeling of sediment yield,” Water Resour. Res. 10(3), pp485-492, 1974.
57. Bommer, J.J.; Rodríguez, C.E.,Earthquake-induced landslides in Central America.,Engineering Geology, v 63, n 3-4, March, 2002, p 189-200
58. Borga; Fontana, D.; Da Ros; Marchi, Shallow landslide hazard assessment using a physically based model and digital elevation data. Environmental Geology 35, pp.81~88, 1998.
59. Borga; Fontana, D.; Cazorzi, Analysis of rainfall-triggered shallow landsliding using a quasi-dynamic wetness index, 1998.
60. Caine, N., The rainfall intensity-during control of shallow landslides and debris flows. Geografiska Annaler Vol.62, pp.23-27, 1980.
61. Cannon, S. H.; Ellen, S. D, Rainfall conditions for abundant debris avalanches in the San Francisco Bayegion California. California Geology, Vol.38, No.12, pp.267-272, 1985.
62. Casson, B; Delacourt, C; Baratoux, D; Allemand, P,Seventeen years of the “La Clapière” landslide evolution analysed from ortho-rectified aerial photographs.,Engineering Geology, v 68, n 1-2, February, 2003, p 123-139.
63. Chau, K.T.; Sze, Y.L.; Fung, M.K.; Wong, W.Y.; Fong, E.L.; Chan, L.C.P.,Landslide hazard analysis for Hong Kong using landslide inventory and GIS.,Computers and Geosciences, v 30, n 4, May, 2004, p 429-443
64. Chen, C.Y.; Chen, T.C.; Yu, F.C.; Yu, W.H.; Tseng, C.C., Rainfall duration and debris-flow initiated studies for real-time monitoring. Environmental Geology Vol.47, pp.715-724, 2005
65. Chen, C.Y.; Yu, F.C.; Lin, S.C.; Cheung, K.W., Discussion of landslide self-organized criticality and the initiation of debris flow. Earth Surface Processes and Landforms Vol.32, No.2, pp.197-209, 2006.
66. Crozier, M.J., Prediction of rainfall-triggered landslides: A test of the antecedent water status model. Earth Surface Processes and Landforms, Vol.24, pp.825–833, 1999.
67. Dai, F.C.; Lee, C.F.,Frequency–volume relation and prediction of rainfall-induced landslides.,Engineering Geology, v 59, n 3-4, April, 2001, p 253-266
68. Dai, F.C.; Lee, C.F.,Landslide characteristics and slope instability modeling using GIS, Lantau Island, Hong Kong.,Geomorphology Volume: 42, Issue: 3-4, January 15, 2002, pp. 213-228
69. Dai, F.C. ; Lee, C.F.,A spatiotemporal probabilistic modelling of storm-induced shallow landsliding using aerial photographs and logistic regression.,Earth Surface Processes and Landforms, v 28, n 5, May, 2003, p 527-545
70. Dai, F.C. ; Lee, C.F.; Wang, S.J. ,,Characterization of rainfall-induced landslides.,International Journal of Remote Sensing, v 24, n 23, Dec 10, 2003, p 4817-4834
71. Dietrich; Wilson; Montgomery; McKean; Bauer, Erosion thresholds and land surface morphology, Geology 20, pp.675~679, 1992.
72. Dietrich; Reiss; Hsu; Montgomery, A process-based model for colluvial soil depth and shallow landsliding using digital elevation data, Hydrol. Process, 9, pp.383-400, 1995
73. Domenico, C.; Antonio, S.,The January 10, 1997 Pozzano landslide, Sorrento Peninsula, Italy.,Engineering Geology, v 75, n 2, October, 2004, p 181-200
74. Giacomo, D.A; Roberto, G.; Alberto, P.,The influence of the geological and geomorphological settings on shallow landslides. An example in a temperate climate environment: the June 19, 1996 event in northwestern Tuscany (Italy).,Engineering Geology, v 73, n 3-4, June, 2004, p 215-228
75. Ferro, V., Further remarks on a distributed approach to sediment delivery. Hydrology Science Journal, Vol.42, No.5, pp.633–647, 1997.
76. FitzHugha, T.W.; Mackayb, D.S., Impacts of input parameter spatial aggregation on an agricultural non-point source pollution model, Journal of Hydrology, 236, p35–p53, 2000.
77. Flageollet, J.C.; Maquaire, O.; Martin, B.; Weber, D,Landslides and climatic conditions in the Barcelonnette and Vars basins (Southern French Alps, France).,Geomorphology Volume: 30, Issue: 1-2, October, 1999, pp. 65-78
78. Flageollet, J.C.; Maquaire, O.; Martin, B.; Weber, D,Landslide hazards and mitigation measures at Gangtok, Sikkim Himalaya.,Engineering Geology, v 64, n 4, June, 2002, p 351-368
79. Friedel, S.; Thielen, A; Springman, S.M.,Investigation of a slope endangered by rainfall-induced landslides using 3D resistivity tomography and geotechnical testing.,Journal of Applied Geophysics, v 60, n 2, October, 2006, p 100-114
80. Godt, J.W.; Baum, R.L.; Chleborad, A.F.,Rainfall characteristics for shallow landsliding in Seattle, Washington, USA.,Earth Surface Processes and Landforms, v 31, n 1, January, 2006, p 97-110
81. Gokceoglu, C.; Sonmez, H.; Nefeslioglu, H.A.; Duman, T.Y.; Can, Tolga,The 17 March 2005 Kuzulu landslide (Sivas, Turkey) and landslide-susceptibility map of its near vicinity.,Engineering Geology, v 81, n 1, September, 2005, p 65-83
82. Hung, J.J.; Lin, M.L.; Chen, T.C.; Wang, K.L. 2000, Disasters, characteristics, and case analysis of slope failures caused by Chi-Chi earthquake. Sino-Geotechnics, Vol.81, pp.17– 32, 2000.
83. Itoh; Egashira; Miyamoto, Influence of Interparticle Friction on Debris-Flow, 2nd International Conference on Debris Flow, Debris-Flow Hazards Mitigation, Taipei, pp.219~229, 2000.
84. Iversion; Reid; Lahusen, Debris-Flow mobilization from landslides. Annual Review of Earth and Planetary Sciences 25, pp.85~136, 1997.
85. Jan, C. D.; Lee, M.H.; Huang, T. H., Rainfall Threshold Criterion for Debris Flow Initiation, 2002 Annual Meeting on Hazards Mitigation Research, pp.8-1 ~ pp.8-17, Taipei, 2002.
86. Jan, C.D.; Lee, M. H.; Wang, J. S.; Wang, C. L., A Rainfall-Based Debris-Flow Warning Model and its Application in Taiwan, International Conference on Slope Disaster Mitigation Strategy, pp.111-119, Taipei, 2004.
87. Jhong, Z.K., Report on Chi-Chi Earthquake of September 21, 1999. Technical Report of Central Weather Bureau, Taiwan, 2001.
88. Jibson, R.W.; Keefer, D.K., Analysis of the seismic origin of landslides: examples from New Madrid seismic zone. Bulletin of Geological Society of America Vol. 105, pp.521-536, 1993.
89. Jibson, R.W.; Prentice, C.S. ; Borissoff, B.A. ; Rogozhin, E.A. ; Langer, C.L., Some observations of landslides triggered by the 29 April 1991 Racha earthquake, Republic of Georgia. Bulletin of the Seismological Society of America Vol. 84, pp.964-973, 1994.
90. Kaima, T.W.; Wang, W.N.; Sguzui, H., The landslide disaster induced by the Taiwan Chi-Chi earthquake of 21 September 1999. Landslide News Vol. 13, pp.8-12, 2000.
91. Keefer, D.K,Landslides caused by earthquakes.,Geological Society of America Bulletin, v 95, n 4, Apr, 1984, p 406-421
92. Keefer, D.K.; WILSON, R.C.; MARK, R.K.; BRABB, E.E.; BROWN, W.M. III; ELLEN, S.D.; HARP, E.L.; WIECZOREK, G.F.; ALGER, C.S.; ZATKIN, R.S., Real-time landslide warning during heavy rainfall. Science Vol. 238, pp.921-925, 1987.
93. Keefer, D.K.,Statistical analysis of an earthquake-induced landslide distribution - the 1989 Loma Prieta, California event.,Engineering Geology, v 58, n 3-4, Dec, 2000, p 231-249
94. Keefer, D.K.,Investigating landslides caused by earthquakes - A historical review.,Surveys in Geophysics, v 23, n 6, Assessment and Mitigation of Collateral Hazards, 2002, p 473-510
95. Khazai, B.; Sitar, N.,Evaluation of factors controlling earthquake-induced landslides caused by Chi-Chi earthquake and comparison with the Northridge and Loma Prieta events.,Engineering Geology, v 71, n 1-2, January, 2004, p 79-95
96. Kothyari, U.C.; Tiwari, A.K.; Ranvir, S., Estimation of temporal variation of sediment yield from small catchments through the kinematic method ,Journal of Hydrology 203 pp39-57, 1997.
97. Lan, H.X. ; Zhou, C.H.; Wang, L.J.; Zhang, H.Y.; Li, R.H.,Landslide hazard spatial analysis and prediction using GIS in the Xiaojiang watershed, Yunnan, China.,Engineering Geology, v 76, n 1-2, December, 2004, Engineering Geology in China, p 109-128
98. Lal, R., Soil degradation by erosion, Land Degrade Develop, 12, p519–p539, 2001.
99. Lee, S.; Chwae, U.; Min, K.,Landslide susceptibility mapping by correlation between topography and geological structure: the Janghung area, Korea.,Geomorphology Volume: 46, Issue: 3-4, August 1, 2002, pp. 149-162
100. Lee, S.,Application of likelihood ratio and logistic regression models to landslide susceptibility mapping using GIS.,Environmental Management, v 34, n 2, August, 2004, p 223-232
101. Lee, S.,Application of logistic regression model and its validation for landslide susceptibility mapping using GIS and remote sensing data.,International Journal of Remote Sensing, v 26, n 7, Apr 10, 2005, p 1477-1491
102. Lee, S.; Tu Dan, N.,Probabilistic landslide susceptibility mapping in the Lai Chau province of Vietnam: focus on the relationship between tectonic fractures and landslides.,Environmental Geology, v48,p 778-787
103. Lin, C.W.; Liu, S.H.; Lee, S.Y.; Liu, C.C.,Impacts of the Chi-Chi earthquake on subsequent rainfall-induced landslides in central Taiwan.,Engineering Geology, v 86, n 2-3, Aug 10, 2006, p 87-101
104. Lin, C.W.; Shieh, C.L.; Yuan, B.D.; Shieh, Y.C.; Liu, S.H.; Lee, S.Y., Impact of Chi-Chi earthquake on the occurrence of landslides and debris flows : example from the Chenyulan River watershed, Nantou, Taiwan. Engineering Geology, Vol.71, pp.49-61, 2003.
105. Lin, C.W.; Shieh, C.L.; Yuan, B.D.; Shieh, Y.C.; Liu, S.H.; Lee, S.Y.,Impact of Chi-Chi earthquake on the occurrence of landslides and debris flows: Example from the Chenyulan River watershed, Nantou, Taiwan.,Engineering Geology, v 71, n 1-2, January, 2004, p 49-61
106. Lin, M.L.; Jeng, F.S.,Characteristics of hazards induced by extremely heavy rainfall in Central Taiwan - Typhoon Herb.,Engineering Geology, v 58, n 2, Nov, 2000, p 191-207
107. Lin, M.L.; Tung, C.C.,A GIS-based potential analysis of the landslides induced by the Chi-Chi earthquake.,Engineering Geology, v 71, n 1-2, January, 2004, p 63-77
108. Luo, H. Y.; Zhou, W.; Huang, S. L.; Chen, G.,Earthquake-induced landslide stability analysis of The Las Colinas landslide in El Salvador.,International Journal of Rock Mechanics and Mining Sciences, v 41, n SUPPL. 1, May, 2004, p 2B 26 1-6
109. Montgomery; Dietrich, A physical based model for the topographic control on shallow landsliding, Water Resources Research 30(4), pp.1153~1171, 1994.
110. Ocakoglu, F.; Gokceoglu, C.; Ercanoglu, M.,Dynamics of a complex mass movement triggered by heavy rainfall: a case study from NW Turkey.,Geomorphology,15 January 2002, vol. 42, no. 3, pp. 329-341
111. Okamoto, T.; Larsen, J.O.; Matsuura, S.; Asano, S.; Takeuchi, Y.; Grande, L.,Displacement properties of landslide masses at the initiation of failure in quick clay deposits and the effects of meteorological and hydrological factors.,Engineering Geology, v 72, n 3-4, April, 2004, p 233-251
112. Onder Cetin, K.; Isik, N.; Unutmaz, B.,Seismically induced landslide at Degirmendere Nose, Izmit Bay during Kocaeli (Izmit)-Turkey earthquake.,Soil Dynamics and Earthquake Engineering, v 24, n 3, April, 2004, p 189-197
113. Prestininzi, A.; Romeo, R.,Earthquake-induced ground failures in Italy.,Engineering Geology, v 58, n 3-4, Dec, 2000, p 387-397
114. Rodríguez, C.E.; Bommer, J.J.; Chandler, R.J.,Earthquake-induced landslides: 1980–1997.,Soil Dynamics and Earthquake Engineering Volume: 18, Issue: 5, July, 1999, pp. 325-346
115. Shieh, C.L., Debris flow surveillance in central Taiwan after Typhoon Toraji. Disaster Prevention Research Center, National Cheng-Kung University, 2002.
116. Shieh, C.L.; Chen, J.C.; Lin, C.W., A study on characteristics of debris flow streams before and after Chi-Chi earthquake. Paper presented at the International Conference on earthquake Hazard Preparedness, Rescue and Recovery, Taipei, Taiwan, pp.163-173, 2004.
117. Shieh, C.L.; Chen, L.Z., Developing the critical line of debris-flow occurrence. Journal of Chinese Soil and Water Conservation, Vol.26, No.3, pp.167-172, 1995.
118. Shieh, C.L.; Chen, Y.S.; Lee, S.; Tsai, Y., Sediment budget at Wushihkeng watershed after Chi-Chi earthquake. Paper presented at the Interpraevet 2006, Niigata University, Niigata, Japan. 24-26 September, 2006, pp.355-364.
119. Shieh, C.L.; Chen, Y.S.; Shieh, M.; Tsai, Y., Rainfall criteria variation of debris flow occurring at Mt. Ninety-Nine. Paper presented at the Interpraevet 2006, Niigata University, Niigata, Japan. 24-26 September, 2006, pp.167-175.
120. Shieh, M.L., A study on cluster analysis of potential debris-flow streams and critical precipitation line in the central disaster-hit area (master thesis). Department of Hydraulic and Ocean Engineering, Cheng-Kung University, Tainan, Taiwan, 2002.
121. Shou, K.J.; Wang, C.F.,Analysis of the Chiufengershan landslide triggered by the 1999 Chi-Chi earthquake in Taiwan., Engineering Geology, v 68, n 3-4, March, 2003, p 237-250
122. Suzen, M.L. ; Doyuran, V.,A comparison of the GIS based landslide susceptibility assessment methods: Multivariate versus bivariate.,Environmental Geology, v 45, n 5, March, 2004, p 665-679
123. Süzen, M.L.; Doyuran, V.,Data driven bivariate landslide susceptibility assessment using geographical information systems: a method and application to Asarsuyu catchment, Turkey.,Engineering Geology, v 71, n 3-4, February, 2004, p 303-321
124. Takahashi, T., Debris Flow. Disaster Prevention Research Institute, Kyoto University, Kyoto, Japan, 1981.
125. Takahashi, Debris Flow, International Association for Hydraulic Research, Published by A. Balkema, Rotterdam, and Brookfield, 1991.
126. Takahashi, Initiation and flow various types of debris flow, 2nd International Conference on Debris Flow, Debris-Flow Hazards Mitigation, Taipei, pp.15~25, 2000.
127. Takahashi, T., Estimation of potential debris flows and their hazardous zones. Journal of Natural Disaster Science Vol.3, No.1, pp.57-89, 1981.
128. Tsaparas, I.; Rahardjo, H.; Toll, D.G.; Leong, E.C.,Controlling parameters for rainfall-induced landslides.,Computers and Geotechnics, v 29, n 1, 2002, p 1-27
129. US Army Corps of Engineers Hydrologic Engineering Center, HEC-1 Flood Hydrograph Package User's Manual, pp25-30, 1998.
130. Vandine, D.F., Debris Flows and Debris Torrents in the Southern Canadian Cordillera. Canada Geotechnique Journal, Vol.22, pp.44-68, 1985.
131. Van Asch, T.h.W.J.; Buma, J.; Van Beek, L.P.H., A view on some hydrological triggering systems in landslides, geomorphology 30,pp25–32, 1999.
132. Van Westen, C.J.; Lulie Getahun, F., Analyzing the evolution of the Tessina landslide using aerial photographs and digital elevation models, Geomorphology, 54, p77–p89, 2003.
133. Wang, G.; Sassa, K.,Pore-pressure generation and movement of rainfall-induced.,Engineering Geology, v 69, n 1-2, April, 2003, p 109-125
134. Wang, H.B.; Sassa, K.,Comparative evaluation of landslide susceptibility in Minamata area, Japan.,Environmental Geology, v 47, n 7, May, 2005, p 956-966
135. Wang, W.N.; Yin, C.Y.; Chen, C.C.; Lee, M.C., Characteristics of slope failures induced by 921-earthquake in central Taiwan. Taiwan-Japan Joint Conference on the Investigation and Remediation of Secondary Disasters after the 921 Earthquake, pp. 79-90, 2000.
136. Weissel, J.K.; Stark, C.P.,Landslides triggered by the 1999 Mw7.6 Chi Chi earthquake in Taiwan and their relationship to topography.,International Geoscience and Remote Sensing Symposium (IGARSS), v 2, 2001, p 759-761
137. Wieczorek, G.F., Effect of rainfall intensity and during on debris flows in central Santa Cruz Mountains, California, Flows/Avalanches: Process, Recognition and Mitigation. Geological Society of America, Reviews in Engineering Geology Vol.7, pp.93-104, 1987.
138. Wilson, R.C.; Wieczorek, G.F., Rainfall thresholds for the initiation of debris flows at La Honda, California. Environmental and Engineering Geoscience, Vol.1, No.1, pp.11-27, 1995.
139. Wischmeier, W.H.; Smith, D.D., Predicting Rainfall Erosion Losses: A guide to conservation department of agricultural, U.S. Department of Agriculture, Agricultural Handbook, No.537, 1978.
140. Wu, H.L., The geological hazards and reconstruction records after Chi-Chi earthquake. Soil and Water Conservation Burean, Council of Agriculture, Nantou, Taiwan, 2001.