簡易檢索 / 詳目顯示

研究生: 陳泰霖
Chen, Tie-Liung
論文名稱: 客製化小型水下考古用ROV之系統介面改良
The Improvement of System Interface of Customized Small ROV for Underwater Archeology
指導教授: 陳政宏
Chen, Jeng-Horng
學位類別: 碩士
Master
系所名稱: 工學院 - 系統及船舶機電工程學系
Department of Systems and Naval Mechatronic Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 90
中文關鍵詞: 水下考古小型ROV系統整合學習時間控制方法
外文關鍵詞: underwater archaeology, small-ROV, system integration, learning time, control method
相關次數: 點閱:79下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以客製化小型ROV為基礎,目的是將推進系統、姿態與深度感測系統及攝影鏡頭,三者進行內部系統整合及技術提升,結合人因工程設計方法,優化使用者操作介面,使系統介面符合水下考古人員的作業需求,提升工作效率,並先以成大拖航水槽為測試水域,測試水下載具程式優化後的操作性、穩定性及攝影,另外,我們會以實際水域進行現場實測,搭配水下攝影量測技術,嘗試建立實地水域之3D模型。
    水下載具ROV的縱搖與橫搖姿態控制不易,為了克服此項問題,搭配深度航向感測器新增系統的自動定深與路徑推測功能,另針對原有設計之ROV進行改良,包括程式優化、艙間與推進系統佈置、重心及浮心調整及感測系統,並以人因工程設計方法整合人機介面,新增搖桿與把手控制方法,讓不同的使用者能夠選用適合自己的操控方式。
    根據不同控制方法與學習時間試驗結果顯示,把手控制器有助於降低使用者的學習時間,且如果使用者平常對控制器的使用頻率較高,也有降低學習時間的效果。經過改良設計後的介面使小型ROV能貼近水下考古的作業需求,我們也執行了兩次岸邊測試與一次外海測試,在試驗中發現問題並嘗試解決,其中ROV抗流與定位控制的問題,仍需在未來改善。

    Based on the customized small-ROV, the purpose of this research is to integrate the propulsion system, attitude sensing system, depth sensing system and photographic lens into the internal system and and improve the technology. Combing human factors engineering design methods to optimize user interface, so that the system interface will meet the operational requirements of underwater archaeologists and improve work efficiency. And we take place the experiment to test the the operation, stability and photography after program optimization in NCKU towing tank. Additionally, we will conduct the field test in saline waters and try to build a 3D model of the water area in the field with the underwater photogrammetry.

    It is not easy to control the pitch and roll attitude of the ROV. In order to overcome this problem, the automatic depth and path prediction function of the system will be added with the depth and attitude sensor. Improvements on the ROV, including program optimization, cabin and propulsion system layout, center of gravity and center of buoyancy adjustment and sensing system. The human-machine interface is integrated with the human factor engineering design method, and the gamepad and joystick are added for different users to choose suitable control methods.

    According to the results in this research, the gamepad can help reduce the learning time. And if the user uses the controller more frequently, it will also reduce the learning time. Consequently, the modified interface allows the small ROV to meet the operational requirements of underwater archaeology. We have also conducted two nearshore tests and one offshore test, in which we found problems and tried to solve them. Nevertheless, the choking and positioning control still need to be improved in the future.

    摘要 I Extend Abstract II 誌謝 VII 目錄 VIII 表目錄 XI 圖目錄 XIII 符號說明 XVIII 第一章 緒論 1 1-1 研究動機與背景 1 1-1-1臺灣水下考古之現況 1 1-1-2臺灣海域之地理條件 3 1-2 文獻探討 5 1-2-1參考文獻回顧 5 1-2-2文獻分析 9 1-3 研究目的 10 第二章 研究方法 11 2-1 實驗設備、模型與機構 11 2-1-1水下載具ROV 11 2-1-2溫深航向姿態儀 13 2-1-3T200推進器 21 2-1-4Subconn防水接頭 24 2-1-5電源供應 28 2-2 載具設計方法 29 2-2-1系統控制流程 30 2-2-2艙間配置 32 2-2-3重心、浮心初估 34 2-2-4推進器配置 40 2-3 系統整合 42 2-3-1推進系統 42 2-3-2壓力及姿態感測器 45 2-3-3Webcam鏡頭 46 2-3-4連結把手搖桿控制 47 2-3-5航位推測法 49 2-3-6深度控制 50 2-3-7人機介面整合 52 2-4 實驗方法 55 2-4-1穩定水槽測試 55 2-4-2拖航水槽測試 59 2-4-3實水域測試 60 第三章 設計結果分析與改善 62 3-1 系統整合特點分析 62 3-2 不同操控模式之學習時間 66 3-2-1線性迴歸 67 3-2-2無母數分析 69 3-3 水下攝影量測 75 3-4 實水域試驗 80 第四章 結論與未來展望 85 4-1 結論 85 4-1-1完成事項與發現 85 4-1-2建議 86 4-2 未來展望 87 參考文獻 88

    Apted, T., Kay, J., & Quigley, A. (2006). Tabletop sharing of digital photographs for the elderly. Paper presented at the Proceedings of the SIGCHI conference on Human Factors in computing systems.

    Åström, K. J. (2002). Control system design lecture notes for me 155a. Department of Mechanical and Environmental Engineering University of California Santa Barbara, 333.

    Bingham, B., Foley, B., Singh, H., Camilli, R., Delaporta, K., Eustice, R., Sakellariou, D. (2010). Robotic tools for deep water archaeology: Surveying an ancient shipwreck with an autonomous underwater vehicle. Journal of Field Robotics, 27(6), 702-717. doi: 10.1002/rob.20350

    Brennan, M. L., Ballard, R. D., Roman, C., Bell, K. L. C., Buxton, B., Coleman, D. F.,Turanlı, T. (2012). Evaluation of the modern submarine landscape off southwestern Turkey through the documentation of ancient shipwreck sites. Continental Shelf Research, 43, 55-70. doi: 10.1016/j.csr.2012.04.017

    Christ, R. D., & Wernli, R. L. (2014). Vehicle Design and Stability. 107-120. doi: 10.1016/b978-0-08-098288-5.00005-1

    Foley, B. P., Dellaporta, K., Sakellariou, D., Bingham, B. S., Camilli, R., Eustice, R. M., Theodoulou, T. (2009). The 2005 Chios Ancient Shipwreck Survey: New Methods for Underwater Archaeology. Hesperia: The Journal of the American School of Classical Studies at Athens, 78(2), 269-305.

    Henderson et al. (2013). Mapping Submerged Archaeological Sites using Stereo-Vision Photogrammetry. International Journal of Nautical Archaeology, 42(2), 243-256. doi: 10.1111/1095-9270.12016

    Johnson-Roberson, M., Bryson, M., Friedman, A., Pizarro, O., Troni, G., Ozog, P., & Henderson, J. C. (2017). High-Resolution Underwater Robotic Vision-Based Mapping and Three-Dimensional Reconstruction for Archaeology. Journal of Field Robotics, 34(4), 625-643. doi: 10.1002/rob.21658
    Klaus and Gabriele. (2010). The structure-from-motion reconstruction pipeline–a survey with focus on short image sequences. Kybernetika, 46(5), 926-937.

    Kleeman, L. (1992, 12-14 May 1992). Optimal estimation of position and heading for mobile robots using ultrasonic beacons and dead-reckoning. Paper presented at the Proceedings 1992 IEEE International Conference on Robotics and Automation.

    Molland. (2008). Chapter 10 - Underwater vehicles A2 - Molland, Anthony F The Maritime Engineering Reference Book (pp. 728-783). Oxford: Butterworth-Heinemann.

    Moore, S. W., Bohm, H., & Jensen, V. (2010). Underwater robotics: science, design & fabrication: Marine Advanced Technology Education (MATE) Center.

    Silfverberg, M., MacKenzie, I. S., & Kauppinen, T. (2001). An isometric joystick as a pointing device for handheld information terminals. Paper presented at the Graphics Interface.

    Von Alt, C. (2003). Autonomous underwater vehicles. Paper presented at the Autonomous Underwater Lagrangian Platforms and Sensors Workshop.

    Wernli, R. L., & Christ, R. D. (2009). Observation Class ROVs Come of Age. Paper presented at the Sixth International Symposium on Underwater Technology Wuxi, China, April.

    Westoby, M. J., Brasington, J., Glasser, N. F., Hambrey, M. J., & Reynolds, J. M. (2012). ‘Structure-from-Motion’photogrammetry: A low-cost, effective tool for geoscience applications. Geomorphology, 179, 300-314.

    何傳坤. (2007). 淺談台灣的水下考古,國立自然科學博物館(館訊第36期).

    高翊庭. (2017). 水下考古用客製化小型 ROV 於水下攝影測量之應用. 國立成功大學系統暨船舶機電工程學系碩士論文.

    莊文傑與江中權. (2003). 臺灣四周海域海流數值模擬研究(三),交通部運輸研究所.
    郭芯瑜, 詹鈞評, 饒見有, & 陳政宏. (2016). 影像式三維重建於水下考古之先期研究. 文化資產保存學刊(37期), 頁7-23.

    臧振華. (2010). 台灣附近海域水下文化資產第二階段普查計畫. 文化部文化資產局.

    臧振華. (2011a). 水下考古與近年來澎湖海域調查,西瀛海洋文化研習營,國史館臺灣文獻館.

    臧振華. (2011b). 甚麼是水下考古. 《人文與社會科學簡訊》, 行政院國家科學委員會(3), 12.

    臧振華. (2011c). 潛進歷史–水下考古: 到水下考古. 《科學發展》, 行政院國家科學委員會(458), 6-12.

    臧振華, & 劉金源. (2009). 台灣水下考古的啟動: 近年來澎湖海域水下考古調查. 《 海洋臺灣─ 教育文化與海洋法政》, 財團法人台灣研究基金會, 國立臺灣海洋大學, 158-183.

    科技部海洋學門資料庫,海流資料,取自http://www.odb.ntu.edu.tw/adcp/ (下載日期: 2018/7/13).

    下載圖示 校內:立即公開
    校外:2021-08-20公開
    QR CODE