簡易檢索 / 詳目顯示

研究生: 陳瑋笙
Chen, Wei-Sheng
論文名稱: 凝血酶調節素在上皮細胞的生物功能
The Biological Functions of Thrombomodulin in Epithelial cells
指導教授: 吳華林
Wu, Hua-Lin
學位類別: 碩士
Master
系所名稱: 醫學院 - 生物化學暨分子生物學研究所
Department of Biochemistry and Molecular Biology
論文出版年: 2006
畢業學年度: 94
語文別: 英文
論文頁數: 72
中文關鍵詞: 上皮細胞凝血酶調節素
外文關鍵詞: thrombomodulin, epithelial cells
相關次數: 點閱:85下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 凝血酶調節素(TM)原先在血管內皮細胞所發現,是為人所熟知的抗凝血及抗纖維蛋白溶解(fibrinolysis)的因子。TM藉由與不同蛋白的交互作用而有抗凝血、抗纖維蛋白溶解、抗發炎的功能。TM的lectin-like區域本身也具有抗發炎反應的功能;TM的類上皮生長因子區域 (EGF-like domain)本身也有促進血管新生的功能。TM除了表現於血管內皮細胞之外,也表現於上皮的刺狀層 (spinous layer),且在人及老鼠受傷後的新生表皮會大量表現。然而,TM表現於上皮細胞的功能並未被充分了解。本實驗利用會表現TM的細胞株HaCaT 細胞,以及穩定表現綠螢光蛋白(eGFP) 和TM的突變株(無lectin-like區域,TMGdL)的HaCaT研究TM在上皮細胞中的生物功能。在刮傷癒合分析(scratch wound healing assay)中,TMGdL表現的HaCaT細胞,其移動速度比綠螢光蛋白表現的HaCaT細胞還要慢(爬行12小時後,平均速度分別是2.0 與 7.0 um/hr)。仔細分析二者的爬行路徑發現,TMGdL表現的HaCaT細胞的路徑較不規則(不直接爬往受傷區域)。這種改變的路徑與我們之前在利用shRNA使TM表現量降低的HaCaT細胞中有相同的情形。而0.5 nM 到 1.5 nM的可溶性TM(soluble TM,稱為TMD123)則可以促進HaCaT細胞移行。利用shRNA使TM表現量降低的HaCaT細胞,其生長速率比對照組的HaCaT細胞還要慢;TMGdL表現的HaCaT細胞,其生長速率也比綠螢光蛋白表現的HaCaT細胞還要慢。此外,HaCaT細胞之間的黏著可被TM專一性的單株抗體以及ethylene glycol tetra acetic acid (EGTA)所阻斷(分別是36 %以及55 %)。TMGdL表現的HaCaT細胞其與細胞外基質(extracellular matrix)的黏著能力比綠螢光蛋白表現的HaCaT細胞還要低。另一方面,利用胰蛋白酶分離分析(trypsin detachment assay)也發現,TMGdL表現的HaCaT細胞比綠螢光蛋白表現的HaCaT細胞更易與基質分離。TM表現量下降的HaCaT細胞,在第一型膠原蛋白上延展的面積比控制組小。我們的結果顯示上皮細胞中的TM調節細胞與細胞間以及細胞與基質的黏著,上皮細胞的生長,以及上皮細胞的移動速度以及方向。另外,我們的結果也暗示可溶性的TMs可以促進傷口癒合時的表皮再生(reepithelialization),這些可溶性的TMs也許可以作為癒合傷口的天然藥物。

    Thrombomodulin (TM) is a glycosylated type I transmembrane protein that is originally identified in vascular endothelium and is well-characterized as a natural anti-coagulant and anti-fibrinolytic factor. TM exerts its anti-coagulant, anti-fibrinolytic, and anti-inflammatory functions through interactions with diverse proteins. The lectin-like domain and epidermal growth factor (EGF) domains of TM alone also exert anti-inflammatory and angiogenic activities, respectively. TM was highly expressed in the spinous layer of epidermis, and it was shown that TM was strongly expressed by stratifying keratinocytes within the neoepidermis in both murine and human wounds. However, the functions of TM expressed in epithelial cells are not well-characterized. In this study, the biological functions of TM were studied in TM-abundant epithelium cell line HaCaT cells transfected with green fluorescent protein (eGFP) or lectin-like domain-deleted TM (TMGdL). HaCaT cells expressed TMGdL showed slower rate of migration than that of eGFP-expressed HaCaT cells in scratch wound healing assay (2.0 and 7.0 um/hr 12hr after scratch, respectively). Careful analysis of the migratory tracks of eGFP- or TMGdL-expressed HaCaT cells revealed that substantially less directed motion was observed in TMGdL- overexpressed cells, which was in line with our previous study that TM- knocked-down HaCaT cells displayed altered migratory tracks. Soluble TM, denoted as TMD123, promoted HaCaT cells migration at the concentrations of 1 and 1.5 nM. The proliferation rate of TM-knocked-down HaCaT cells was slower than that of control HaCaT cells; TMGdL-overexpressed HaCaT cells also displayed slower proliferation rate than eGFP-expressed HaCaT cells. Moreover, adhesion between HaCaT cells was blocked by TM-specific monoclonal antibody (up to 36 %) and ethylene glycol tetra acetic acid (EGTA) (up to 55 %); adhesion strength measured by trypsin detachment assay showed that TMGdL-overexpressed HaCaT cells were detached easier than eGFP- expressed HaCaT cells. Spreading area of TM-knocked-down HaCaT cells was smaller than that of control HaCaT cells on type I collagen-coating dish. Our results indicated that TM regulated cell-to-cell and cell-to-matrix adhesion, and rate as well as direction of migration in epithelial cells. Moreover, our data also suggested that soluble TMs would enhance re-epithelialization during wound healing, and they can be natural product(s) as drug candidates for skin injury.

    Abstract in Chinese 1 Abstract in English 3 Acknowledgement 5 Contents 6 Contents of figures and tables 7 Abbreviation 8 Reagents 9 Introduction 13 Material and Method 20 Result 34 Discussion 39 Reference 46 Figures 55 Tables 70 Resume 72

    Appleton, M.A., Attanoos, R.L. and Jasani, B. (1996) Thrombomodulin as a marker of vascular and lymphatic tumours. Histopathology 29(2), 153-7.

    Arts, G.J., Langemeijer, E., Tissingh, R., Ma, L., Pavliska, H., Dokic, K., Dooijes, R., Mesic, E., Clasen, R., Michiels, F., van der Schueren, J., Lambrecht, M., Herman, S., Brys, R., Thys, K., Hoffmann, M., Tomme, P. and van Es, H. (2003) Adenoviral vectors expressing siRNAs for discovery and validation of gene function. Genome Res 13(10), 2325-32.

    Bartel, D.P. (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116(2), 281-97.
    Bartel, D.P. and Chen, C.Z. (2004) Micromanagers of gene expression: the potentially widespread influence of metazoan microRNAs. Nat Rev Genet 5(5), 396-400.

    Bernstein, E., Caudy, A.A., Hammond, S.M. and Hannon, G.J. (2001) Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409(6818), 363-6.

    Boden, D., Pusch, O., Lee, F., Tucker, L. and Ramratnam, B. (2004) Efficient gene transfer of HIV-1-specific short hairpin RNA into human lymphocytic cells using recombinant adeno-associated virus vectors. Mol Ther 9(3), 396-402.

    Boffa, M.C., Burke, B. and Haudenschild, C.C. (1987) Preservation of thrombomodulin antigen on vascular and extravascular surfaces. J Histochem Cytochem 35(11), 1267-76.

    Brummelkamp, T.R., Bernards, R. and Agami, R. (2002) Stable suppression of tumorigenicity by virus-mediated RNA interference. Cancer Cell 2(3), 243-7.

    Burg, M.A., Nishiyama, A. and Stallcup, W.B. (1997) A central segment of the NG2 proteoglycan is critical for the ability of glioma cells to bind and migrate toward type VI collagen. Exp Cell Res 235(1), 254-64.

    Cheng, T., Liu, D., Griffin, J.H., Fernandez, J.A., Castellino, F., Rosen, E.D., Fukudome, K. and Zlokovic, B.V. (2003) Activated protein C blocks p53-mediated apoptosis in ischemic human brain endothelium and is neuroprotective. Nat Med 9(3), 338-42.

    Daimon, T., Kazama, M., Miyajima, Y. and Nakano, M. (1997) Immunocytochemical localization of thrombomodulin in the aqueous humor passage of the rat eye. Histochem Cell Biol 108(2), 121-31.

    David-Dufilho, M., Millanvoye-Van Brussel, E., Topal, G., Walch, L., Brunet, A. and Rendu, F. (2005) Endothelial thrombomodulin induces Ca2+ signals and nitric oxide synthesis through epidermal growth factor receptor kinase and calmodulin kinase II. J Biol Chem 280(43), 35999-6006.

    Doench, J.G., Petersen, C.P. and Sharp, P.A. (2003) siRNAs can function as miRNAs. Genes Dev 17(4), 438-42.

    Dykxhoorn, D.M., Novina, C.D. and Sharp, P.A. (2003) Killing the messenger: short RNAs that silence gene expression. Nat Rev Mol Cell Biol 4(6), 457-67.

    Elbashir, S.M., Lendeckel, W. and Tuschl, T. (2001a) RNA interference is mediated by 21- and 22-nucleotide RNAs. Genes Dev 15(2), 188-200.

    Elbashir, S.M., Martinez, J., Patkaniowska, A., Lendeckel, W. and Tuschl, T. (2001b) Functional anatomy of siRNAs for mediating efficient RNAi in Drosophila melanogaster embryo lysate. Embo J 20(23), 6877-88.

    Elenius, V., Gotte, M., Reizes, O., Elenius, K. and Bernfield, M. (2004) Inhibition by the soluble syndecan-1 ectodomains delays wound repair in mice overexpressing syndecan-1. J Biol Chem 279(40), 41928-35.

    Esmon, C.T. (1995) Thrombomodulin as a model of molecular mechanisms that modulate protease specificity and function at the vessel surface. Faseb J 9(10), 946-55.

    Esmon, C.T., Esmon, N.L. and Harris, K.W. (1982) Complex formation between thrombin and thrombomodulin inhibits both thrombin-catalyzed fibrin formation and factor V activation. J Biol Chem 257(14), 7944-7.

    Fang, X., Burg, M.A., Barritt, D., Dahlin-Huppe, K., Nishiyama, A. and Stallcup, W.B. (1999) Cytoskeletal reorganization induced by engagement of the NG2 proteoglycan leads to cell spreading and migration. Mol Biol Cell 10(10), 3373-87.

    Fujiwara, M., Jin, E., Ghazizadeh, M. and Kawanami, O. (2002) Antisense oligodeoxynucleotides against thrombomodulin suppress the cell growth of lung adenocarcinoma cell line A549. Pathol Int 52(3), 204-13.

    Gallo, R., Kim, C., Kokenyesi, R., Adzick, N.S. and Bernfield, M. (1996) Syndecans-1 and -4 are induced during wound repair of neonatal but not fetal skin. J Invest Dermatol 107(5), 676-83.

    Grishok, A. and Mello, C.C. (2002) RNAi (Nematodes: Caenorhabditis elegans). Adv Genet 46, 339-60.

    Grishok, A., Pasquinelli, A.E., Conte, D., Li, N., Parrish, S., Ha, I., Baillie, D.L., Fire, A., Ruvkun, G. and Mello, C.C. (2001) Genes and mechanisms related to RNA interference regulate expression of the small temporal RNAs that control C. elegans developmental timing. Cell 106(1), 23-34.

    Hammond, S.M., Bernstein, E., Beach, D. and Hannon, G.J. (2000) An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature 404(6775), 293-6.

    Healy, A.M., Rayburn, H.B., Rosenberg, R.D. and Weiler, H. (1995) Absence of the blood-clotting regulator thrombomodulin causes embryonic lethality in mice before development of a functional cardiovascular system. Proc Natl Acad Sci U S A 92(3), 850-4.

    Hemann, M.T., Fridman, J.S., Zilfou, J.T., Hernando, E., Paddison, P.J., Cordon-Cardo, C., Hannon, G.J. and Lowe, S.W. (2003) An epi-allelic series of p53 hypomorphs created by stable RNAi produces distinct tumor phenotypes in vivo. Nat Genet 33(3), 396-400.

    Huang, H.C., Shi, G.Y., Jiang, S.J., Shi, C.S., Wu, C.M., Yang, H.Y. and Wu, H.L. (2003) Thrombomodulin-mediated cell adhesion: involvement of its lectin-like domain. J Biol Chem 278(47), 46750-9.

    Hutvagner, G., McLachlan, J., Pasquinelli, A.E., Balint, E., Tuschl, T. and Zamore, P.D. (2001) A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science 293(5531), 834-8.

    Hutvagner, G. and Zamore, P.D. (2002) A microRNA in a multiple-turnover RNAi enzyme complex. Science 297(5589), 2056-60.

    Iida, J., Meijne, A.M., Spiro, R.C., Roos, E., Furcht, L.T. and McCarthy, J.B. (1995) Spreading and focal contact formation of human melanoma cells in response to the stimulation of both melanoma-associated proteoglycan (NG2) and alpha 4 beta 1 integrin. Cancer Res 55(10), 2177-85.

    Iida, J., Skubitz, A.P., Furcht, L.T., Wayner, E.A. and McCarthy, J.B. (1992) Coordinate role for cell surface chondroitin sulfate proteoglycan and alpha 4 beta 1 integrin in mediating melanoma cell adhesion to fibronectin. J Cell Biol 118(2), 431-44.

    Iino, S., Abeyama, K., Kawahara, K., Yamakuchi, M., Hashiguchi, T., Matsukita, S., Yonezawa, S., Taniguchi, S., Nakata, M., Takao, S., Aikou, T. and Maruyama, I. (2004) The antimetastatic role of thrombomodulin expression in islet cell-derived tumors and its diagnostic value. Clin Cancer Res 10(18 Pt 1), 6179-88.

    Ikeda, T., Ishii, H., Higuchi, T., Sato, K., Hayashi, Y., Ikeda, K. and Hirabayashi, Y. (2000) Localization of thrombomodulin in the anterior segment of the human eye. Invest Ophthalmol Vis Sci 41(11), 3383-90.

    Isermann, B., Hendrickson, S.B., Hutley, K., Wing, M. and Weiler, H. (2001a) Tissue-restricted expression of thrombomodulin in the placenta rescues thrombomodulin-deficient mice from early lethality and reveals a secondary developmental block. Development 128(6), 827-38.

    Isermann, B., Hendrickson, S.B., Zogg, M., Wing, M., Cummiskey, M., Kisanuki, Y.Y., Yanagisawa, M. and Weiler, H. (2001b) Endothelium-specific loss of murine thrombomodulin disrupts the protein C anticoagulant pathway and causes juvenile-onset thrombosis. J Clin Invest 108(4), 537-46.

    Isermann, B., Sood, R., Pawlinski, R., Zogg, M., Kalloway, S., Degen, J.L., Mackman, N. and Weiler, H. (2003) The thrombomodulin-protein C system is essential for the maintenance of pregnancy. Nat Med 9(3), 331-7.

    Ishiguro, K., Kadomatsu, K., Kojima, T., Muramatsu, H., Tsuzuki, S., Nakamura, E., Kusugami, K., Saito, H. and Muramatsu, T. (2000) Syndecan-4 deficiency impairs focal adhesion formation only under restricted conditions. J Biol Chem 275(8), 5249-52.

    Ishii, H. and Majerus, P.W. (1985) Thrombomodulin is present in human plasma and urine. J Clin Invest 76(6), 2178-81.

    Jones, P.H. and Watt, F.M. (1993) Separation of human epidermal stem cells from transit amplifying cells on the basis of differences in integrin function and expression. Cell 73(4), 713-24.

    Ketting, R.F., Fischer, S.E., Bernstein, E., Sijen, T., Hannon, G.J. and Plasterk, R.H. (2001) Dicer functions in RNA interference and in synthesis of small RNA involved in developmental timing in C. elegans. Genes Dev 15(20), 2654-9.

    Kim, S.J., Shiba, E., Ishii, H., Inoue, T., Taguchi, T., Tanji, Y., Kimoto, Y., Izukura, M. and Takai, S. (1997) Thrombomodulin is a new biological and prognostic marker for breast cancer: an immunohistochemical study. Anticancer Res 17(3C), 2319-23.

    Lane, D.A. and Grant, P.J. (2000) Role of hemostatic gene polymorphisms in venous and arterial thrombotic disease. Blood 95(5), 1517-32.

    Levy, L. and Hill, C.S. (2005) Smad4 dependency defines two classes of transforming growth factor {beta} (TGF-{beta}) target genes and distinguishes TGF-{beta}-induced epithelial-mesenchymal transition from its antiproliferative and migratory responses. Mol Cell Biol 25(18), 8108-25.

    Lin, X.H., Grako, K.A., Burg, M.A. and Stallcup, W.B. (1996) NG2 proteoglycan and the actin-binding protein fascin define separate populations of actin-containing filopodia and lamellipodia during cell spreading and migration. Mol Biol Cell 7(12), 1977-93.

    Liu, W.F., Nelson, C.M., Pirone, D.M. and Chen, C.S. (2006) E-cadherin engagement stimulates proliferation via Rac1. J Cell Biol 173(3), 431-41.

    Lohi, O., Urban, S. and Freeman, M. (2004) Diverse substrate recognition mechanisms for rhomboids; thrombomodulin is cleaved by Mammalian rhomboids. Curr Biol 14(3), 236-41.

    Maretzky, T., Reiss, K., Ludwig, A., Buchholz, J., Scholz, F., Proksch, E., de Strooper, B., Hartmann, D. and Saftig, P. (2005) ADAM10 mediates E-cadherin shedding and regulates epithelial cell-cell adhesion, migration, and beta-catenin translocation. Proc Natl Acad Sci U S A 102(26), 9182-7.

    Martinez, J., Patkaniowska, A., Urlaub, H., Luhrmann, R. and Tuschl, T. (2002) Single-stranded antisense siRNAs guide target RNA cleavage in RNAi. Cell 110(5), 563-74.

    Matsushita, Y., Yoshiie, K., Imamura, Y., Ogawa, H., Imamura, H., Takao, S., Yonezawa, S., Aikou, T., Maruyama, I. and Sato, E. (1998) A subcloned human esophageal squamous cell carcinoma cell line with low thrombomodulin expression showed increased invasiveness compared with a high thrombomodulin-expressing clone--thrombomodulin as a possible candidate for an adhesion molecule of squamous cell carcinoma. Cancer Lett 127(1-2), 195-201.

    Meister, G. and Tuschl, T. (2004) Mechanisms of gene silencing by double-stranded RNA. Nature 431(7006), 343-9.

    Mittal, V. (2004) Improving the efficiency of RNA interference in mammals. Nat Rev Genet 5(5), 355-65.
    Miyagishi, M. and Taira, K. (2003) Strategies for generation of an siRNA expression library directed against the human genome. Oligonucleotides 13(5), 325-33.

    Myers-Irvin, J.M., Van Le, T.S. and Getzenberg, R.H. (2005) Mechanistic analysis of the role of BLCA-4 in bladder cancer pathobiology. Cancer Res 65(16), 7145-50.

    Nagano, O. and Saya, H. (2004) Mechanism and biological significance of CD44 cleavage. Cancer Sci 95(12), 930-5.

    Nakano, M., Furutani, M., Hiraishi, S. and Ishii, H. (1998) Characterization of soluble thrombomodulin fragments in human urine. Thromb Haemost 79(2), 331-7.

    Nelson, C.M. and Chen, C.S. (2002) Cell-cell signaling by direct contact increases cell proliferation via a PI3K-dependent signal. FEBS Lett 514(2-3), 238-42.

    Nykanen, A., Haley, B. and Zamore, P.D. (2001) ATP requirements and small interfering RNA structure in the RNA interference pathway. Cell 107(3), 309-21.

    Ogawa, H., Yonezawa, S., Maruyama, I., Matsushita, Y., Tezuka, Y., Toyoyama, H., Yanagi, M., Matsumoto, H., Nishijima, H., Shimotakahara, T., Aikou, T. and Sato, E. (2000) Expression of thrombomodulin in squamous cell carcinoma of the lung: its relationship to lymph node metastasis and prognosis of the patients. Cancer Lett 149(1-2), 95-103.

    Ogura, M., Ito, T., Maruyama, I., Takamatsu, J., Yamamoto, S., Ogawa, K., Nagura, H. and Saito, H. (1990) Localization and biosynthesis of functional thrombomodulin in human megakaryocytes and a human megakaryoblastic cell line (MEG-01). Thromb Haemost 64(2), 297-301.

    Omi, K., Tokunaga, K. and Hohjoh, H. (2004) Long-lasting RNAi activity in mammalian neurons. FEBS Lett 558(1-3), 89-95.

    Peterson, J.J., Rayburn, H.B., Lager, D.J., Raife, T.J., Kealey, G.P., Rosenberg, R.D. and Lentz, S.R. (1999) Expression of thrombomodulin and consequences of thrombomodulin deficiency during healing of cutaneous wounds. Am J Pathol 155(5), 1569-75.

    Pindon, A., Berry, M. and Hantai, D. (2000)
    Thrombomodulin as a new marker of lesion-induced astrogliosis: involvement of thrombin through the G-protein-coupled protease-activated receptor-1. J Neurosci 20(7), 2543-50.

    Ponta, H., Sherman, L. and Herrlich, P.A. (2003) CD44: from adhesion molecules to signalling regulators. Nat Rev Mol Cell Biol 4(1), 33-45.

    Raife, T.J., Lager, D.J., Madison, K.C., Piette, W.W., Howard, E.J., Sturm, M.T., Chen, Y. and Lentz, S.R. (1994) Thrombomodulin expression by human keratinocytes. Induction of cofactor activity during epidermal differentiation. J Clin Invest 93(4), 1846-51.

    Raife, T.J., Lager, D.J., Peterson, J.J., Erger, R.A. and Lentz, S.R. (1998) Keratinocyte-specific expression of human thrombomodulin in transgenic mice: effects on epidermal differentiation and cutaneous wound healing. J Investig Med 46(4), 127-33.

    Rosenberg, R.D. (1997) Thrombomodulin gene disruption and mutation in mice. Thromb Haemost 78(1), 705-9.

    Rubinson, D.A., Dillon, C.P., Kwiatkowski, A.V., Sievers, C., Yang, L., Kopinja, J., Rooney, D.L., Ihrig, M.M., McManus, M.T., Gertler, F.B., Scott, M.L. and Van Parijs, L. (2003) A lentivirus-based system to functionally silence genes in primary mammalian cells, stem cells and transgenic mice by RNA interference. Nat Genet 33(3), 401-6.

    Salomaa, V., Matei, C., Aleksic, N., Sansores-Garcia, L., Folsom, A.R., Juneja, H., Chambless, L.E. and Wu, K.K. (1999) Soluble thrombomodulin as a predictor of incident coronary heart disease and symptomless carotid artery atherosclerosis in the Atherosclerosis Risk in Communities (ARIC) Study: a case-cohort study. Lancet 353(9166), 1729-34.

    Sasaki, T., Shiohama, A., Minoshima, S. and Shimizu, N. (2003) Identification of eight members of the Argonaute family in the human genome small star, filled. Genomics 82(3), 323-30.

    Siolas, D., Lerner, C., Burchard, J., Ge, W., Linsley, P.S., Paddison, P.J., Hannon, G.J. and Cleary, M.A. (2005) Synthetic shRNAs as potent RNAi triggers. Nat Biotechnol 23(2), 227-31.

    Soff, G.A., Jackman, R.W. and Rosenberg, R.D. (1991) Expression of thrombomodulin by smooth muscle cells in culture: different effects of tumor necrosis factor and cyclic adenosine monophosphate on thrombomodulin expression by endothelial cells and smooth muscle cells in culture. Blood 77(3), 515-8.

    Stallcup, W.B. and Dahlin-Huppe, K. (2001) Chondroitin sulfate and cytoplasmic domain-dependent membrane targeting of the NG2 proteoglycan promotes retraction fiber formation and cell polarization. J Cell Sci 114(Pt 12), 2315-25.

    Suehiro, T., Shimada, M., Matsumata, T., Taketomi, A., Yamamoto, K. and Sugimachi, K. (1995) Thrombomodulin inhibits intrahepatic spread in human hepatocellular carcinoma. Hepatology 21(5), 1285-90.

    Tabata, M., Sugihara, K., Yonezawa, S., Yamashita, S. and Maruyama, I. (1997) An immunohistochemical study of thrombomodulin in oral squamous cell carcinoma and its association with invasive and metastatic potential. J Oral Pathol Med 26(6), 258-64.

    Tabata, M., Yonezawa, S., Sugihara, K., Yamashita, S. and Maruyama, I. (1995) The use of thrombomodulin to study epithelial cell differentiation in neoplastic and non-neoplastic oral lesions. J Oral Pathol Med 24(10), 443-9.

    Takebayashi, Y., Yamada, K., Maruyama, I., Fujii, R., Akiyama, S. and Aikou, T. (1995) The expression of thymidine phosphorylase and thrombomodulin in human colorectal carcinomas. Cancer Lett 92(1), 1-7.

    Tezuka, Y., Yonezawa, S., Maruyama, I., Matsushita, Y., Shimizu, T., Obama, H., Sagara, M., Shirao, K., Kusano, C., Natsugoe, S. and et al. (1995) Expression of thrombomodulin in esophageal squamous cell carcinoma and its relationship to lymph node metastasis. Cancer Res 55(18), 4196-200.

    Tillet, E., Gential, B., Garrone, R. and Stallcup, W.B. (2002) NG2 proteoglycan mediates beta1 integrin-independent cell adhesion and spreading on collagen VI. J Cell Biochem 86(4), 726-36.

    Tillet, E., Ruggiero, F., Nishiyama, A. and Stallcup, W.B. (1997) The membrane-spanning proteoglycan NG2 binds to collagens V and VI through the central nonglobular domain of its core protein. J Biol Chem 272(16), 10769-76.

    Tiscornia, G., Singer, O., Ikawa, M. and Verma, I.M. (2003) A general method for gene knockdown in mice by using lentiviral vectors expressing small interfering RNA. Proc Natl Acad Sci U S A 100(4), 1844-8.

    Tokumaru, S., Higashiyama, S., Endo, T., Nakagawa, T., Miyagawa, J.I., Yamamori, K., Hanakawa, Y., Ohmoto, H., Yoshino, K., Shirakata, Y., Matsuzawa, Y., Hashimoto, K. and Taniguchi, N. (2000) Ectodomain shedding of epidermal growth factor receptor ligands is required for keratinocyte migration in cutaneous wound healing. J Cell Biol 151(2), 209-20.

    Tuschl, T. (2002) Expanding small RNA interference. Nat Biotechnol 20(5), 446-8.

    Weiler-Guettler, H., Aird, W.C., Rayburn, H., Husain, M. and Rosenberg, R.D. (1996) Developmentally regulated gene expression of thrombomodulin in postimplantation mouse embryos. Development 122(7), 2271-81.

    Wilcox-Adelman, S.A., Denhez, F., Iwabuchi, T., Saoncella, S., Calautti, E. and Goetinck, P.F. (2002) Syndecan-4: dispensable or indispensable? Glycoconj J 19(4-5), 305-13.

    Williams, R.W. and Rubin, G.M. (2002) ARGONAUTE1 is required for efficient RNA interference in Drosophila embryos. Proc Natl Acad Sci U S A 99(10), 6889-94.

    Wittelsberger, S.C., Kleene, K. and Penman, S. (1981) Progressive loss of shape-responsive metabolic controls in cells with increasingly transformed phenotype. Cell 24(3), 859-66.

    Wu, K.K., Aleksic, N., Ballantyne, C.M., Ahn, C., Juneja, H. and Boerwinkle, E. (2003) Interaction between soluble thrombomodulin and intercellular adhesion molecule-1 in predicting risk of coronary heart disease. Circulation 107(13), 1729-32.

    Xia, H., Mao, Q., Eliason, S.L., Harper, S.Q., Martins, I.H., Orr, H.T., Paulson, H.L., Yang, L., Kotin, R.M. and Davidson, B.L. (2004) RNAi suppresses polyglutamine-induced neurodegeneration in a model of spinocerebellar ataxia. Nat Med 10(8), 816-20.

    Xia, H., Mao, Q., Paulson, H.L. and Davidson, B.L. (2002) siRNA-mediated gene silencing in vitro and in vivo. Nat Biotechnol 20(10), 1006-10.

    Xu, K.P., Ding, Y., Ling, J., Dong, Z. and Yu, F.S. (2004) Wound-induced HB-EGF ectodomain shedding and EGFR activation in corneal epithelial cells. Invest Ophthalmol Vis Sci 45(3), 813-20.

    Yang, J., Price, M.A., Neudauer, C.L., Wilson, C., Ferrone, S., Xia, H., Iida, J., Simpson, M.A. and McCarthy, J.B. (2004) Melanoma chondroitin sulfate proteoglycan enhances FAK and ERK activation by distinct mechanisms. J Cell Biol 165(6), 881-91.

    Yu, Q. and Stamenkovic, I. (1999) Localization of matrix metalloproteinase 9 to the cell surface provides a mechanism for CD44-mediated tumor invasion. Genes Dev 13(1), 35-48.

    Zamore, P.D., Tuschl, T., Sharp, P.A. and Bartel, D.P. (2000) RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell 101(1), 25-33.

    Zhang, Y., Weiler-Guettler, H., Chen, J., Wilhelm, O., Deng, Y., Qiu, F., Nakagawa, K., Klevesath, M., Wilhelm, S., Bohrer, H., Nakagawa, M., Graeff, H., Martin, E., Stern, D.M., Rosenberg, R.D., Ziegler, R. and Nawroth, P.P. (1998) Thrombomodulin modulates growth of tumor cells independent of its anticoagulant activity. J Clin Invest 101(7), 1301-9.

    無法下載圖示 校內:2106-07-24公開
    校外:2106-07-24公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE