| 研究生: |
陳思達 Chen, Ssu-Ta |
|---|---|
| 論文名稱: |
摩擦攪拌銲接對Al-Cu系2218合金微觀組織變化之效應 Effect of FSW Joining on Microstructure Evolution of Al-Cu 2218 Alloy |
| 指導教授: |
陳立輝
Chen, Li- Hui 呂傳盛 Lui, Truan-Sheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2004 |
| 畢業學年度: | 92 |
| 語文別: | 中文 |
| 論文頁數: | 68 |
| 中文關鍵詞: | 再結晶 、摩擦攪拌銲接 |
| 外文關鍵詞: | recrystallization, FSW |
| 相關次數: | 點閱:71 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Al-Cu系合金為高強度熱處理型鋁合金,以往用熔接法作接合時會因為熔接部發生偏析、組織不均勻等,而造成機械性質的劣化。近年來所開發的一種固態接合法-摩擦攪拌銲接(Friction-Stir Welding, FSW),可避免以上因熔接所造成的問題。為釐清Al-Cu合金經過FSW後的微觀組織特徵及析出相效應,本研究選用Al-Cu系2218合金經擠型處理(擠型F材)及擠型與T6處理(擠型T6材)為實驗材料進行探討。本實驗進行硬度、拉伸性質測試,亦利用背向式電子繞射分析系統進行織構的分析,以了解組織與織構演化及機械性質間的關係。
就微觀組織方面而言,擠型F材、T6材經過FSW後(擠型F材-FSW及擠型T6材-FSW),銲道組織皆有晶粒細化的現象發生,與原組織比較可發現此二材料共同擁有低差排密度組織、晶粒取向較發散等再結晶組織特徵。此外,第二相晶出及析出顆粒並未因FSW所產生大量的熱及剪變而分解。機械性質方面,擠型F材-FSW銲道硬度值與拉伸變形組抗皆較原材料(擠型F材)上升;而擠型T6材-FSW強度反而下降。
值得注意的是,擠型T6材-FSW織構在<110>方位集中的程度不如擠型F材-FSW,且有較高比例的低角度晶界,而可觀察到部分晶粒內仍有差排存在以及差排堆積在次晶粒晶界上。基於這些結果,可推測擠型T6材-FSW之再結晶程度不如擠型F材-FSW,可能與由T6處理中所析出之分佈細密的Al2Cu顆粒阻礙再結晶行為有關。
Al-Cu alloys, heat treatable high strength aluminum alloys, suffer from the deterioration in mechanical properties of the joints due to segregation and non-uniform structure when jointed by traditional fusion welding techniques. Recently, a brand-new solid-state welding technique, friction-stir welding (FSW) has being developed. It overcome the defects of fusion welding. This study aimed to investigate the characteristics of the friction stirred structure of Al-Cu alloys and the effect of precipitation.
For this purpose, extruded 2218 plates with the conditions of as fabricated F and T6 were applied. Microstructural observation, EBSD (Electron BackScattered Diffraction) analisis, microhardness and tensile tests were performed to explored the relationship between microstructural evolution, texture and mechanical properties.
With respect to microstrictures, both materials have the same tendency to get grain-refinement, low dislocation matrix and random distributed texture after FSW. In addition, the intermetallics and precipitates didn’t dissolve by the heat and large amount of shear deformation caused by FSW. As for the mechanical properties, the hardness and strength of the F-FSW materials were raised, while those of the T6-FSW were reduced.
It is worth of noticing that compared with the orientation of T6-FSW samples were less concentrated on <110> than F-FSW ones. And, the fraction of low angle grain boundaries of the T6-FSW was larger. It could be also observed that dislocations still existed within some of the recrystallized grains and piled up upon the subgrain boundaries. These phenomena indicate that the degree of recrytallization for T6-FSW was less than F-FSW. The effect of fine Al2Cu precipitates, formed during the T6 treatment, to stunt the recrystallization should account for this.
1. 賴耿陽譯, “熔接專門技術用書”, 復漢出版社, 民66年, p. 107-111.
2. 陳金富, 林宏昌, “熔接學”, 全華出版社, 民74年, p. 153.
3. 賴耿陽譯, “熔接專門技術用書”, 復漢出版社, 民66年, p.
31.
4. Y. Li, L. E. Murr and J. C. McClure, “Solid-State Flow Visualization in Friction-Stir Welding of 2024 Al to 6061 Al”, Scripta Mater., Vol.40, No.9 (1999), pp. 1041- 1046.
5. C. G. Rhodes, M. W. Mahoney, W. H. Bingel, R. A. Spurling and C. C. Bampton, “Effects of Friction Stir Welding on Microstructure of 7075 Aluminum”, Scripta Mater., Vol.36, No.1(1997), pp. 69-75.
6. G. Liu, L. E. Murr, C-S. Niou, J. C. McClure and F. R. Vega, “Microstructural Aspects of The Friction-Stir Welding of 6061-T6 Aluminum”, Scripta Mater., Vol.37, No.3(1997), pp. 355-361.
7. K. V. Jata and S. L. Semiatin, “Continuous Dynamic Recrystallization During Friction Stir Welding of High Strength Alumimun”, Scripa Mater., Vol.43, No.8(2000), pp. 743- 749.
8. Y. S. Sato, H. Kokawa, M. Enomoto, S. Jogan and T. Hashimoto, “Precipitation Sequence in Friction Stir Weld of 6063 Aluminum during Aging”, Metall. and Mater. Trans. A, Vol.30A, No.12(1999), pp. 3125-3130.
9. N. Saito and I. Shigematsu, “Grain Refinement of 1050 Aluminum Alloy by Friction Stir Processing ”, J. Mater. Sci. Letters., Vol.20, No.20(2001), pp. 1913-1915.
10. B. M. Gable, G. J. Shiflet and E. A. Starke Jr., “The Effect of Additions on Ω Precipitation in Al-Cu-Mg-(Ag) Alloys”, Scripta Mater., Vol.50, No.1(2004), pp. 149-153.
11. P. M. Bronsveld, M. J. Starink, M. Verwerft, J. Th. M. de Hosson and P. van Mourik, ”Observation of Precipitation in A Particle Reinforced Al-Cu-Mg Alloy with 20% Silicon”, Scripta Mater., Vol.33, No.3(1995), pp. 427-432.
12. D. G. Eskin, “The Effect of Alloying Additives on Structure and Properties of Cast Al-Cu-Si-Mg Alloys”, Z. Metall, Vol.86, No.1(1995), pp. 60-63.
13. M. J. Starink, V. Abeels and P. van Mourik, “Lattice Parameter and Hardness Variations Resulting from Precipitation and Misfit Accommodation in A Particle-Reinforced Al-Si-Cu-Mg alloy”, Mater. Sci. Eng. A ,
Vol.A163, No.1(1993), pp.115-125.
14. I. Dutta, C. P. Harper and G. Dutta, “Role of Al2O3 Particulate Reinforcements on Precipitation in 2014 Al-Matrix Composites” , Metall. and Mater. Trans., Vol.25A, No.6(1994), pp.1591.
15. Uday Chakkingal, Arief B. and P. F. Thomson, “Microstructure Development During Equal Channel Angular Drawing of Al At Room Temperature”, Scripta Mater., Vol.39, No.6(1998), pp. 677-684.
16. R. Kaibyshev, O. Sitdikov, A. Goloborodko and T. Sakai, “Grain Refinement in As-Cast 7475 Aluminum Alloy under Hot Deformation”, Mater. Sci. Eng. A, Vol.344, No.1-2(2003), pp. 348-356.
17. S. Benavides, Y. Li And L. E. Murr, in “Ultrafine Grained Materials”, Edited by R. S. Mishra, S. L. Semiatin, C. Suryanarayana, N. N. Thadhani and T. C. Lowe (TMS, Warrendale, PA, 2000) P155.
18. Y. Iwahashi, Z. Horita, M. Nemoto And T. G. Langdon, “Investigation of Microstructural Evolution during Equal-Channel Angular Pressing”, Acta Mater., Vol.45, No.11(1997), pp.4733-4741.
19. Y. S. Sato and H. Kokawa, “Distribution of Tensile Property and Microstructure in Friction Stir Weld of 6063 Aluminum”, Metall. and Mater. Trans. A, Vol.32A, No.12(2001), pp.3023-3031.
20. Y. S. Sato, M. Urata, H. Kokawa and K. Ikeda, “Hall-
Petch Relationship in Friction Stir Welds of Equal Channel Angular-Pressed Aluminum Alloys”, Mater. Sci. Eng. A , Vol.354, No.1-2(2003), pp.298-305.
21. F. J. Humphreys and M. Hatherly, “RECRYSTALLIZATION and Related Annealing Phenomena”, Oxford, UK, Pergamon, Tarrytown, N.Y., U.S.A., 1996.
22. L. Lity’nska, R. Braun, G. Staniek, C. Dalle Donne and J. Dutkiewicz, “TEM Study of The Microstructure Evolution in A Friction-Stir Welded Alcumgag Alloy ”, Mater. Chemistry and Physics, Vol.81, No.2-3, (2003), pp. 293-295.
23. W. B. Lee, Y. M. Yeon and S. B. Jung, “The Improvement of Mechanical Properties of Friction-Stir Welded A356 Al Alloy”, Mater. Sci. Eng. A , Vol.355, No.1-2(2003), pp. 154-159.
24. Y. S. Sato, S. H. C. Park and H. Kokawa, “Microstructure Factors Governing Hardness in Friction-Stir Welds of Solid-Solution-Hardened Al alloys”, Metall. and Mater. Trans. A, Vol.32A, No.12(2001), pp.3033-3042.
25. Y. S. Sato, H. Kokawa, M. Enomoto and S. Jogan, “Microstructure Evolution of 6063 Aluminum during Friction-Stir Welding”, Metall. and Mater. Trans. A, Vol.30A , No.9(1999), pp.2429-2437.
26. 廖中賢、黃志青, “電子背向繞射系統之介紹-掃描式電子顯微鏡的新利器” , 科儀新知,Vol.19, No.5, 民87年4月.
27. M. A. Sutton, B. Yang, A. P. Reynolds and R. Taylor, “Microstructural Studies of Friction Stir Welds in 2024-T3 Aluminum”, Mater. Sci. Eng. A , Vol.323, No.1-2(2002), pp. 160-166.
28. L. E. Murr, G. Liu and Mcclure, “A TEM Study of Precipitation and Related Microstructure in Friction-Stir-Welded 6061 Aluminum”, J. Mater. Sci., Vol.33, No.5(1998), pp.1243-1251.
29. O. Engler, X. W. Kong and K. Lucke, “Recrystallization
Textures of Particle-Containing Al-Cu and Al-Mn Single Crystals”, Acta Metall., Vol.49, No.10(2001), pp. 1701-1715.
30. D. P. Field, T. W. Nelson, Y. Hovanski and K. V. Jata, “Heterogeneity of Crystallographic Texture in Friction Stir Welds of Aluminum”, Metall. and Mater. Trans. A, Vol.32A, No.11(2001), pp. 2869-2877.
31. 程金保, “肥粒鐵基球墨鑄鐵共析變態溫度附近以下之熱疲勞龜裂性質探討”, 國立成功大學材料科學及工程學系, 博士論文,民 88年6月.
32. 黃中佐, “鋁合金高溫變形阻抗陡降臨界溫度之銅、矽及鎳效應探討”, 國立成功大學材料科學及工程學系, 碩士論文, 民 92年6月.
33. H. Yamagata, Y. Ohuchida, N. Sato and M. Otsuka, “Nucleation of New Grains during Discontinuous Dynamic Recrystallization of 99.998 Mass% Aluminum at 453 K”, Scripta Mater., Vol.45, No.7(2001), pp. 1055-1061.
34. Yamaha Motor Co. Ltd, Iwata and Shizuoka, “Dynamic Recrystallization and Dynamic Recovery in Pure Aluminum at 583 K”, Acta Metall., Vol.43, No.2(1995), pp. 723-729.
35. M. Ferry and P. R. Munroe, “The Effect of Subgrain Size on The Static Recrystallization Behavior of An Aluminum-Based Metal-Matrix Composite”, Scripta Mater., Vol.33, No.6(1995), pp. 857-862.
36. H. Miura, T. Sakai, A. Belyakov, G. Gottstein, J. Verhasselt and M. Crumbach, “Static Recrystallization of SiO2-Particle containing {011}<100> Copper Single Crystals ”, Acta Metall., Vol.51, No.6(2003), pp. 1507-1515.
37. INCA crystalline analysis guidance.