簡易檢索 / 詳目顯示

研究生: 王紹華
Wang, Shao-Hua
論文名稱: 以莢托馬尾藻進行褐藻多醣之萃取、純化及生物活性探討
Purification and bioactivity characterization of polysaccharides extracted from marine brown macroalgae (Sargassum siliquosum)
指導教授: 張嘉修
Chang, Jo-Shu
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 87
中文關鍵詞: 褐藻多醣馬尾藻抗氧化能力抑制脂質合成抗發炎純化
外文關鍵詞: Fucoidan, brown macroalgae, anti-oxidant, anti-inflammatory, anti-lipogenesis, purification
相關次數: 點閱:137下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 褐藻多醣(Fucoidan)是一種富含岩藻糖(Fucose)的硫酸化多醣,主要存在於褐藻中。許多研究指出褐藻多醣具有多種生物活性如調節免疫力,抗腫瘤,抗氧化,抗病毒且能抑制血管生成阻止癌細胞擴散,故頗具商業化開發之潛力。因此,尋找高效率褐藻多醣生產途徑,以增加產能、降低生產成本,是值得研究開發的課題。
    本研究首先篩選出三種本土褐藻,分別是莢托馬尾藻(Sargassum siliquosum)、半葉馬尾藻(Sargassum hemiphyllum)以及匍枝馬尾藻(Sargassum polycystum),利用傳統熱水萃取法對三種馬尾藻進行褐藻多醣的萃取,其中,莢托馬尾藻可得到最高的多醣產率,且岩藻糖的比例也較其他兩株馬尾藻高,結果顯示多醣含量佔莢托馬尾藻乾重的5.08%,而萃取出來的多醣中有46.5%為岩藻糖。接著,為了能再提高多醣的產率,分別對超聲波輔助萃取法以及微波輔助萃取法進行測試與比較。實驗結果發現,超聲波輔助萃取法對莢托馬尾藻褐藻多醣的萃取效果並不好,超聲波會導致多醣的降解而降低產率,因此不適合用作褐藻多醣的生產。而微波輔助萃取法具有較高的效率,在750 W, 10分鐘及固液比15 mL/g的條件下,多醣產率提高到6.94%。完成萃取條件的最適化之後,為了提高褐藻多醣的純度,本研究對幾種純化策略進行了測試,經過等電點沉澱及氯化鈣沉澱後,萃取物中大部分的蛋白質及醣醛酸成功地被移除,接著用陰離子層析管柱吸附褐藻多醣,分離其他副產物,再利用2 M的氯化鈉溶液以梯度方式進行洗脫,得到純化的馬尾藻萃取物,而多醣的含量從33.31%提高至78.26%且有70.94%的多醣回收率。
    第二部分為褐藻多醣生物活性的分析,本研究分別對莢托馬尾藻萃取物及純化後的褐藻多醣的抗氧化、抑制脂質合成以及抗發炎能力進行測定。結果顯示莢托馬尾藻萃取物具有很高的抗氧化能力,但不具有抑制脂質合成及抗發炎的效果,而純化過後的褐藻多醣其抗氧化能力降低,然而被證實可以抑制細胞中28.9%的脂質合成及14.8%促炎因子(TNF)-α的產生。
    雖然從莢托馬尾藻中萃取出的褐藻多醣具有抗氧化、抑制脂質合成以及抗發炎的能力,但為了能進一步提升其活性,本研究使用過氧化氫對多醣進行部分水解,探討分子量大小對褐藻多醣生物活性的影響。而從結果發現抗氧化能力會隨其分子量下降而提高,當分子量由107.3 kDa降低至3.2 kDa時,褐藻多醣清除DPPH自由基的半效應濃度(EC50)由2.58 mg/mL降低至1.82 mg/mL。此外,褐藻多醣在分子量30-100 kDa的區間中表現出相似的脂質抑制及抗發炎能力,然而當分子量下降至3 kDa時,效果大幅度提升,可抑制71.1%的脂質合成和36.7%促炎因子的產生。接著利用SO3-DMF法提高小分子褐藻寡醣的硫酸根含量,探討硫酸根含量對褐藻寡醣生物活性的影響。結果顯示當硫酸根含量由18.7%提高至32.1%,DPPH的EC50由1.82 mg/mL降低至0.86 mg/mL,且抗發炎活性也有效提高,然而脂質抑制能力卻由71.1%降低至5.3%。
    最後,本研究利用ESI-MS來分析莢托馬尾藻中褐藻多醣的結構,由圖譜顯示,褐藻多醣的主要結構為L-岩藻糖以α-(1,3)-糖苷鍵組成,且具有許多硫酸基在2號碳及4號碳的位置上,多醣上有許多分枝,主要為D-半乳糖以(1,3)-糖苷鍵組成,分枝點位於岩藻糖的4號碳上,而半乳糖上的硫酸基主要位於4號及6號碳上,也有少數分布在2號碳。

    Fucoidan, a group of fucose-rich sulfated polysaccharides found in brown algae, has been shown to possess a variety of human health-related biological activities, such as immune competence regulation, antitumor, antioxidant, antivirus, and inhibition of angiogenesis. Therefore, fucoidan has a high potential for commercialization. In light of this, it is worthwhile to identify more efficient production strategies to improve the productivity of fucoidan and reduce its production cost.
    In this study, three brown algae species identified as Sargassum siliquosum, Sargassum hemiphyllum, and Sargassum polycystum were examined for their potential for fucoidan production. First, conventional hot water extraction method was applied to extract fucoidan from the algal biomass. Among them, S. siliguosum showed the highest fucoidan production and fucose content, giving a total sugar yield of 5.08% with 46.5% of fucose in total sugar. To increase fucoidan yield, ultrasound-assisted extraction (UAE) and microwave-assisted extraction (MAE) were evaluated. The results revealed that UAE causes polysaccharide degradation and decreases fucoidan yield. In contrast, MAE showed high efficiency in fucoidan production, which gave a total sugar yield of 6.94% dry weight under the condition of 750 W, 10 minutes, and a liquid/solid ratio of 15 ml/g. The crude fucoidan was then purified to gain high purity. With the isoelectric focusing treatment and the addition of calcium chloride to final concentration of 20 g/L, most of the protein and alginate were removed. Anion-exchange chromatography (AEC) was subsequently carried out for further purification. Fucoidan was bound on the resin and eluted with 2 M sodium chloride in a linearly increasing gradient. The fucoidan content finally increased from 33.31% to 78.26% with 70.94% of total sugar recovery.
    This study also assayed the antioxidant, anti-lipogenesis, and anti-inflammatory activity of the extracted fucoidan, which were investigated by DPPH scavenging effect, lipid synthesis inhibition, and the inhibition of pro-inflammatory cytokine (TNF)-α production, respectively. The results indicated that crude extract of fucoidan showed a high DPPH scavenging effect, with a EC50 of 0.34 mg/mL, while the inhibition of lipid synthesis and TNF-α production were not determined. After purification, DPPH scavenging effect decreased, but anti-lipogenesis activity and anti-inflammatory activity were discovered. The results show that the purified fucoidan product could inhibit 28.9% of lipid synthesis and 14.8% of TNF-α production.
    To improve the potential biological activity of the fucoidan products, partial hydrolysis was carried out to gain lower molecular weight compounds. With hydrogen peroxide treatment, fucoidan fractions with different average molecular weight (Mw) were obtained. The results showed that antioxidant activities increased with decreasing Mw and the EC50 dropped from 2.58 to 1.82 mg/mL when the Mw decreased from 107.3 to 3.2 kDa. In addition, anti-lipogenesis and anti-inflammatory significantly enhanced when the Mw decreased to about 3 kDa, giving a reduced level of 71.1% and 36.7%, respectively. Then, low molecular weight fucoidan was treated with SO3-DMF method to gain high sulfate content. The results indicated that when sulfate content increased from 18.7% to 32.1%, EC50 of DPPH decreased from 1.82 mg/mL to 0.86 mg/mL, and the anti-inflammatory activity also increased; however, the anti-lipogenesis activity decreased.
    In the last part of this study, ESI-MS was used to analyze the structure of fucoidan obtained from S. siliquosum. The ESI-CID-MS/MS spectra indicated that fucoidan has a backbone composed of (1-3)-linked L-fucose residues, and the sulfate groups are located at C-2 and C-4 of fucose residues. Branches are galactose residues with (1,3)-linkages and the branching point is at C-4 of fucose residues. The sulfate groups on galactose was mainly presented at C-4 and C-6 of galactose residues and some located at C-2.

    摘要 II Abstract IV Acknowledgment VII Contents IX List of Tables XIII List of Figures XV Chapter 1 Introduction 1 1.1 Background and motivation 1 1.2 Research scheme 2 Chapter 2 Literature review 4 2.1 Introduction of brown algae 4 2.2 Introduction of fucoidan 5 2.2.1 Different sources of Fucoidan 5 2.2.2 Fucoidan structure 7 2.2.3 Biological properties of fucoidan 9 2.3 Other compounds extracted from brown seaweed 12 2.3.1 Alginate 12 2.3.2 Laminarin 13 2.3.3 Fucoxanthin 14 2.3.4 Phenolic compounds 15 2.4 Extraction method 15 2.4.1 Acid extraction 16 2.4.2 Ultrasound-assisted extraction 16 2.4.3 Microwave-assisted extraction 17 2.5 Anion exchange chromatography 18 2.6 Structure analysis 18 2.7 Free radicals 19 2.8 Lipogenesis 19 2.9 Inflammation 20 Chapter 3 Materials and methods 21 3.1 Chemicals and materials 21 3.2 Equipment 22 3.3 Analytical methods 23 3.3.1 Determination of total sugar concentration 23 3.3.2 Determination of sugar composition and uronic acid 24 3.3.3 Determination of protein concentration 24 3.3.4 Determination of total phenolic content (TPC) 25 3.3.5 Determination of sulfate content 26 3.3.6 Determination of antioxidant activity 27 3.3.7 Determination of anti-lipogenesis activity 27 3.3.8 Determination of average molecular weight 27 3.3.9 Mass Spectrometry analysis 28 3.4 Experimental methods 29 3.4.1 Crude fucoidan extraction 29 3.4.2 Purification 29 3.4.3 Partial digestion 30 3.4.4 Chemical modification 31 Chapter 4 Results and discussions 32 4.1 Crude fucoidan extraction from marine brown macroalgae Sargassum sp. 32 4.2 Extraction methods to enhance fucoidan yield from S. siliquosum 33 4.2.1 Ultrasound-assisted extraction 33 4.2.2 Microwave-assisted extraction 37 4.2.3 Summary 39 4.3 Purification of fucoidan from crude extract of S. siliquosum 40 4.3.1 Protein removal treatment of crude extract from S. siliquosum 41 4.3.2 Uronic acid removal from crude extract of S. siliquosum 42 4.3.3 Anion-exchange chromatography 43 4.3.4 Summary 44 4.4 Biological activity of fucoidan from S. siliquosum 46 4.4.1 Antioxidant activity of fucoidan from S. siliquosum 46 4.4.2 Anti-lipogenesis activity of fucoidan from S. siliquosum 47 4.4.3 Anti-inflammatory activity of fucoidan from S. siliquosum 50 4.4.4 Summary 52 4.5 Partial digestion and the effect of molecular weight on biological activities of fucoidan from S. siliquosum 53 4.5.1 Partial hydrolysis by hydrogen peroxide treatment 53 4.5.2 Effect of molecular weight on antioxidant activity of fucoidan from S. siliquosum 55 4.5.3 Effect of molecular weight on anti-lipogenesis of fucoidan from S. siliquosum 56 4.5.4 Effect of molecular weight on anti-inflammatory activity of fucoidan from S. siliquosum 58 4.5.5 Summary 59 4.6 Chemical medification and the effect of sulfate content on biological activities of fucoidan from S. siliquosum 62 4.6.1 Preparation of highly sulfated fucoidan 62 4.6.2 Effect of sulfate content on antioxidant activity of fucoidan from S. siliquosum 64 4.6.3 Effect of sulfate content on anti-lipogenesis activity of fucoidan from S. siliquosum 64 4.6.4 Effect of sulfate content on anti-inflammatory activity of fucoidan from S. siliquosum 67 4.6.5 Summary 68 4.7 Structure analysis of fucoidan with ESI-MS 69 4.7.1 Negative ESI–MS spectra of fucoidan 69 4.7.2 Analysis of the sulfate groups position 71 4.7.3 Analysis of glycosidic linkage type 72 4.7.4 Summary 75 Chapter 5 Conclusion 78 References 80

    Adhikari, U., Mateu, C.G., Chattopadhyay, K., Pujol, C.A., Damonte, E.B., Ray, B. (2006) Structure and antiviral activity of sulfated fucans from Stoechospermum marginatum. Phytochemistry, 67(22), pp. 2474-2482.
    Alba, L., Lindor, K. (2003) Non‐alcoholic fatty liver disease. Alimentary pharmacology & therapeutics, 17(8), pp. 977-986.
    Ale, M.T., Meyer, A.S. (2013) Fucoidans from brown seaweeds: An update on structures, extraction techniques and use of enzymes as tools for structural elucidation. RSC Advances, 3(22), pp. 8131-8141.
    Ale, M.T., Mikkelsen, J.D., Meyer, A.S. (2012) Designed optimization of a single-step extraction of fucose-containing sulfated polysaccharides from Sargassum sp. Journal of applied phycology, 24(4), pp. 715-723.
    Alekseyenko, T., Zhanayeva, S.Y., Venediktova, A., Zvyagintseva, T., Kuznetsova, T., Besednova, N., Korolenko, T. (2007) Antitumor and antimetastatic activity of fucoidan, a sulfated polysaccharide isolated from the Okhotsk Sea Fucus evanescens brown alga. Bulletin of experimental biology and medicine, 143(6), pp. 730-732.
    Alves, A.P., Mulloy, B., Moy, G.W., Vacquier, V.D., Mourão, P.A. (1998) Females of the sea urchin Strongylocentrotus purpuratus differ in the structures of their egg jelly sulfated fucans. Glycobiology, 8(9), pp. 939-946.
    Anastyuk, S.D., Shevchenko, N.M., Ermakova, S.P., Vishchuk, O.S., Nazarenko, E.L., Dmitrenok, P.S., Zvyagintseva, T.N. (2012) Anticancer activity in vitro of a fucoidan from the brown alga Fucus evanescens and its low-molecular fragments, structurally characterized by tandem mass-spectrometry. Carbohydrate Polymers, 87(1), pp. 186-194.
    Anderson, M.A., Stone, B. (1975) A new substrate for investigating the specificity of β‐glucan hydrolases. FEBS letters, 52(2), pp. 202-207.
    Bakunina, I.Y., Nedashkovskaya, O., Alekseeva, S., Ivanova, E., Romanenko, L., Gorshkova, N., Isakov, V., Zvyagintseva, T., Mikhailov, V. (2002) Degradation of fucoidan by the marine proteobacterium Pseudoalteromonas citrea. Microbiology, 71(1), pp. 41-47.
    Berteau, O., mccort, I., Goasdoué, N., Tissot, B., Daniel, R. (2002) Characterization of a new α-L-fucosidase isolated from the marine mollusk Pecten maximus that catalyzes the hydrolysis of α-L-fucose from algal fucoidan (Ascophyllum nodosum). Glycobiology, 12(4), pp. 273-282.
    Berteau, O., Mulloy, B. (2003) Sulfated fucans, fresh perspectives: structures, functions, and biological properties of sulfated fucans and an overview of enzymes active toward this class of polysaccharide. Glycobiology, 13(6), pp. 29R-40R.
    Bilan, M., Kusaykin, M., Grachev, A., Tsvetkova, E., Zvyagintseva, T., Nifantiev, N., Usov, A. (2005) Effect of enzyme preparation from the marine mollusk Littorina kurila on fucoidan from the brown alga Fucus distichus. Biochemistry (Moscow), 70(12), pp. 1321-1326.
    Bilan, M.I., Grachev, A.A., Ustuzhanina, N.E., Shashkov, A.S., Nifantiev, N.E., Usov, A.I. (2002) Structure of a fucoidan from the brown seaweed Fucus evanescens C. Ag. Carbohydrate research, 337(8), pp. 719-730.
    Chang, J.J., Hsu, M.J., Huang, H.P., Chung, D.J., Chang, Y.C., Wang, C.J. (2013) Mulberry anthocyanins inhibit oleic acid induced lipid accumulation by reduction of lipogenesis and promotion of hepatic lipid clearance. Journal of agricultural and food chemistry, 61(25), pp. 6069-6076.
    Chargaff, E., Bancroft, F.W., Stanley, M. (1936) Studies on the chemistry of blood coagulation III. The chemical constituents of blood platelets and their role in blood clotting, with remarks on the activation of clotting by lipids. Journal of Biological Chemistry, 116(1), pp. 237-251.
    Chen, Y., Luo, H., Gao, A., Zhu, M. (2011) Ultrasound-assisted extraction of polysaccharides from litchi (Litchi chinensis Sonn.) Seed by response surface methodology and their structural characteristics. Innovative Food Science & Emerging Technologies, 12(3), pp. 305-309.
    Chevolot, L., Foucault, A., Chaubet, F., Kervarec, N., Sinquin, C., Fisher, A.-M., Boisson-Vidal, C. (1999) Further data on the structure of brown seaweed fucans: relationships with anticoagulant activity. Carbohydrate Research, 319(1), pp. 154-165.
    Chew, Y.L., Lim, Y.Y., Omar, M., Khoo, K.S. (2008) Antioxidant activity of three edible seaweeds from two areas in South East Asia. LWT-Food Science and Technology, 41(6), pp. 1067-1072.
    Chizhov, A.O., Dell, A., Morris, H.R., Haslam, S.M., mcdowell, R.A., Shashkov, A.S., Nifant’ev, N.E., Khatuntseva, E.A., Usov, A.I. (1999) A study of fucoidan from the brown seaweed Chorda filum. Carbohydrate Research, 320(1), pp. 108-119.
    Choi, E.M., Kim, A.J., Kim, Y.O., Hwang, J.K. (2005) Immunomodulating activity of arabinogalactan and fucoidan in vitro. Journal of medicinal food, 8(4), pp. 446-453.
    Choi, J.I., Kim, J.K., Kim, J.H., Kweon, D.K., Lee, J.W. (2010) Degradation of hyaluronic acid powder by electron beam irradiation, gamma ray irradiation, microwave irradiation and thermal treatment: A comparative study. Carbohydrate Polymers, 79(4), pp. 1080-1085.
    Chojnacka, K., Kim, S.K. (2015) Introduction of Marine Algae Extracts. Marine Algae Extracts: Processes, Products, and Applications, pp. 1-14.
    Coussens, L.M., Werb, Z. (2002) Inflammation and cancer. Nature, 420(6917), pp. 860-867.
    Cumashi, A., Ushakova, N.A., Preobrazhenskaya, M.E., D'Incecco, A., Piccoli, A., Totani, L., Tinari, N., Morozevich, G.E., Berman, A.E., Bilan, M.I. (2007) A comparative study of the anti-inflammatory, anticoagulant, antiangiogenic, and antiadhesive activities of nine different fucoidans from brown seaweeds. Glycobiology, 17(5), pp. 541-552.
    Descamps, V., Colin, S., Lahaye, M., Jam, M., Richard, C., Potin, P., Barbeyron, T., Yvin, J.C., Kloareg, B. (2006) Isolation and culture of a marine bacterium degrading the sulfated fucans from marine brown algae. Marine Biotechnology, 8(1), pp. 27-39.
    Duarte, M.E., Cardoso, M.A., Noseda, M.D., Cerezo, A.S. (2001) Structural studies on fucoidans from the brown seaweed Sargassum stenophyllum. Carbohydrate Research, 333(4), pp. 281-293.
    Freeman, B.A., Crapo, J.D. (1982) Biology of disease: free radicals and tissue injury. Laboratory investigation; a journal of technical methods and pathology, 47(5), pp. 412-426.
    Gombotz, W.R., Wee, S.F. (2012) Protein release from alginate matrices. Advanced drug delivery reviews, 64, pp. 194-205.
    Griffith, L.G., Naughton, G. (2002) Tissue engineering--current challenges and expanding opportunities. Science, 295(5557), pp. 1009-1014.
    Hayashi, K., Nakano, T., Hashimoto, M., Kanekiyo, K., Hayashi, T. (2008) Defensive effects of a fucoidan from brown alga Undaria pinnatifida against herpes simplex virus infection. International immunopharmacology, 8(1), pp. 109-116.
    Hemmingson, J., Falshaw, R., Furneaux, R., Thompson, K. (2006) Structure and antiviral activity of the galactofucan sulfates extracted from Undaria pinnatifida (Phaeophyta). Journal of Applied Phycology, 18(2), pp. 185-193.
    Hoek, C., Mann, D., Jahns, H.M. (1995) Algae: an introduction to phycology. Cambridge university press.
    Hooper, L., Kroon, P.A., Rimm, E.B., Cohn, J.S., Harvey, I., Le Cornu, K.A., Ryder, J.J., Hall, W.L., Cassidy, A. (2008) Flavonoids, flavonoid-rich foods, and cardiovascular risk: a meta-analysis of randomized controlled trials. The American journal of clinical nutrition, 88(1), pp. 38-50.
    Hou, Y., Wang, J., Jin, W., Zhang, H., Zhang, Q. (2012) Degradation of Laminaria japonica fucoidan by hydrogen peroxide and antioxidant activities of the degradation products of different molecular weights. Carbohydrate Polymers, 87(1), pp. 153-159.
    Hu, T., Liu, D., Chen, Y., Wu, J., Wang, S. (2010) Antioxidant activity of sulfated polysaccharide fractions extracted from Undaria pinnitafida in vitro. International journal of biological macromolecules, 46(2), pp. 193-198.
    Huang, C.Y., Wu, S.J., Yang, W.N., Kuan, A.W., Chen, C.Y. (2016) Antioxidant activities of crude extracts of fucoidan extracted from Sargassum glaucescens by a compressional-puffing-hydrothermal extraction process. Food chemistry, 197, pp. 1121-1129.
    Huebsch, N., Mooney, D.J. (2009) Inspiration and application in the evolution of biomaterials. Nature, 462(7272), pp. 426-432.
    Jo, B.W., Choi, S.K. (2014) Degradation of fucoidans from Sargassum fulvellum and their biological activities. Carbohydrate polymers, 111, pp. 822-829.
    Kadam, S.U., Tiwari, B.K., Smyth, T.J., O’Donnell, C.P. (2015) Optimization of ultrasound assisted extraction of bioactive components from brown seaweed Ascophyllum nodosum using response surface methodology. Ultrasonics sonochemistry, 23, pp. 308-316.
    Karakaya, S. (2004) Bioavailability of phenolic compounds. Critical reviews in food science and nutrition, 44(6), pp. 453-464.
    Kim, M.Y., Seguin, P., Ahn, J.K., Kim, J.J., Chun, S.C., Kim, E.H., Seo, S.H., Kang, E.Y., Kim, S.L., Park, Y.J. (2008) Phenolic compound concentration and antioxidant activities of edible and medicinal mushrooms from Korea. Journal of Agricultural and Food Chemistry, 56(16), pp. 7265-7270.
    Kim, W.J., Kim, S.M., Kim, H.G., Oh, H.R., Lee, K.B., Lee, Y.K., Park, Y.I. (2007) Purification and anticoagulant activity of a fucoidan from Korean Undaria pinnatifida sporophyll. Algae, 22(3), pp. 247-252.
    Lee, J.B., Hayashi, K., Hashimoto, M., Nakano, T., Hayashi, T. (2004) Novel antiviral fucoidan from sporophyll of Undaria pinnatifida (Mekabu). Chemical and Pharmaceutical Bulletin, 52(9), pp. 1091-1094.
    Lee, K.Y., Mooney, D.J. (2001) Hydrogels for tissue engineering. Chemical reviews, 101(7), pp. 1869-1880.
    Li, B., Wei, X.J., Sun, J.L., Xu, S.Y. (2006) Structural investigation of a fucoidan containing a fucose-free core from the brown seaweed, Hizikia fusiforme. Carbohydrate Research, 341(9), pp. 1135-1146.
    Li, D., Xu, Z., Huang, L., Wang, H., Zhang, S. (2001) Effect of fucoidan of L. Japonica on rats with hyperlipidaemia. Food Sci, 22, pp. 92-95.
    Li, D., Xu, Z., Zhang, S. (1999) Prevention and cure of fucoidan of L. Japonica on mice with hypercholesterolemia. Food Sci, 20, pp. 45-46.
    Li, H., Mao, W., Hou, Y., Gao, Y., Qi, X., Zhao, C., Chen, Y., Chen, Y., Li, N., Wang, C. (2012) Preparation, structure and anticoagulant activity of a low molecular weight fraction produced by mild acid hydrolysis of sulfated rhamnan from Monostroma latissimum. Bioresource technology, 114, pp. 414-418.
    Lim, S., Choi, J.I., Park, H. (2015) Antioxidant activities of fucoidan degraded by gamma irradiation and acidic hydrolysis. Radiation Physics and Chemistry, 109, pp. 23-26.
    Machlin, L.J., Bendich, A. (1987) Free radical tissue damage: protective role of antioxidant nutrients. The FASEB Journal, 1(6), pp. 441-445.
    Mandal, P., Mateu, C.G., Chattopadhyay, K., Pujol, C.A., Damonte, E.B., Ray, B. (2007) Structural features and antiviral activity of sulphated fucans from the brown seaweed Cystoseira indica. Antiviral Chemistry and Chemotherapy, 18(3), pp. 153-162.
    Marais, M.F., Joseleau, J.P. (2001) A fucoidan fraction from Ascophyllum nodosum. Carbohydrate Research, 336(2), pp. 155-159.
    Maruyama, H., Yamamoto, I. (1984) An antitumor fucoidan fraction from an edible brown seaweed, Laminaria religiosa. Eleventh International Seaweed Symposium, Springer, pp. 534-536.
    Matthäus, B. (2002) Antioxidant activity of extracts obtained from residues of different oilseeds. Journal of Agricultural and Food Chemistry, 50(12), pp. 3444-3452.
    Meikle, P., Bonig, I., Hoogenraad, N., Clarke, A., Stone, B. (1991) The location of (1→ 3)-β-glucans in the walls of pollen tubes of Nicotiana alata using a (1→ 3)-β-glucan-specific monoclonal antibody. Planta, 185(1), pp. 1-8.
    Nagaoka, M., Shibata, H., Kimura, I., Hashimoto, S., Kimura, K., Makino, T., Aiyama, R., Ueyama, S., Yokokura, T. (1999) Structural study of fucoidan from Cladosiphon okamuranus tokida. Glycoconjugate journal, 16(1), pp. 19-26.
    Nishino, T., Kiyohara, H., Yamada, H., Nagumo, T. (1991) An anticoagulant fucoidan from the brown seaweed Ecklonia kurome. Phytochemistry, 30(2), pp. 535-539.
    Nishino, T., Nagumo, T. (1992) Anticoagulant and antithrombin activities of oversulfated fucans. Carbohydrate research, 229(2), pp. 355-362.
    Nishino, T., Takabe, Y., Nagumo, T. (1994) Isolation and partial characterization of a novel β-D-galactan sulfate from the brown seaweed Laminaria angustata var. Longissima. Carbohydrate polymers, 23(3), pp. 165-173.
    Park, H.Y., Han, M.H., Park, C., Jin, C.-Y., Kim, G.-Y., Choi, I.W., Kim, N.D., Nam, T.J., Kwon, T.K., Choi, Y.H. (2011a) Anti-inflammatory effects of fucoidan through inhibition of NF-κB, MAPK and Akt activation in lipopolysaccharide-induced BV2 microglia cells. Food and chemical toxicology, 49(8), pp. 1745-1752.
    Park, M.K., Jung, U., Roh, C. (2011b) Fucoidan from marine brown algae inhibits lipid accumulation. Marine drugs, 9(8), pp. 1359-1367.
    Ponce, N.M., Pujol, C.A., Damonte, E.B., Flores, L., Stortz, C.A. (2003) Fucoidans from the brown seaweed Adenocystis utricularis: extraction methods, antiviral activity and structural studies. Carbohydrate Research, 338(2), pp. 153-165.
    Powell, J., Meeuse, B.J. (1964) Laminarin in some Phaeophyta of the Pacific coast. Economic Botany, 18(2), pp. 164-166.
    Pueschel, C.M., Stein, J.R. (1983) Ultrastructure of a freshwater brown alga from western canada1. Journal of Phycology, 19(2), pp. 209-215.
    Qi, H., Zhang, Q., Zhao, T., Chen, R., Zhang, H., Niu, X., Li, Z. (2005) Antioxidant activity of different sulfate content derivatives of polysaccharide extracted from Ulva pertusa (Chlorophyta) in vitro. International Journal of Biological Macromolecules, 37(4), pp. 195-199.
    Rodriguez, R.M., Mussatto, S.I., Pastrana, L., Aguilar, C.N., Teixeira, J.A. (2011) Microwave-assisted extraction of sulfated polysaccharides (fucoidan) from brown seaweed. Carbohydrate Polymers, 86(3), pp. 1137-1144.
    Roh, M.K., Uddin, M.S., Chun, B.S. (2008) Extraction of fucoxanthin and polyphenol from Undaria pinnatifida using supercritical carbon dioxide with co-solvent. Biotechnology and Bioprocess Engineering, 13(6), pp. 724-729.
    Sakai, T., Ishizuka, K., Shimanaka, K., Ikai, K., Kato, I. (2003) Structures of oligosaccharides derived from Cladosiphon okamuranus fucoidan by digestion with marine bacterial enzymes. Marine Biotechnology, 5(6), pp. 536-544.
    Sakai, T., Kimura, H., Kato, I. (2002) A marine strain of Flavobacteriaceae utilizes brown seaweed fucoidan. Marine Biotechnology, 4(4), pp. 399-405.
    Shi, Z., Guo, Y., Wang, Z. (2000) Pharmacological activity of fucoidan from Laminaria japonic. J. Shanghai Fish. Univ, 9, pp. 268-271.
    Shimada, K., Fujikawa, K., Yahara, K., Nakamura, T. (1992) Antioxidative properties of xanthan on the autoxidation of soybean oil in cyclodextrin emulsion. Journal of agricultural and food chemistry, 40(6), pp. 945-948.
    Skriptsova, A.V., Shevchenko, N.M., Zvyagintseva, T.N., Imbs, T.I. (2010) Monthly changes in the content and monosaccharide composition of fucoidan from Undaria pinnatifida (Laminariales, Phaeophyta). Journal of Applied Phycology, 22(1), pp. 79-86.
    Synytsya, A., Kim, W.J., Kim, S.M., Pohl, R., Synytsya, A., Kvasnička, F., Čopíková, J., Park, Y.I. (2010) Structure and antitumour activity of fucoidan isolated from sporophyll of Korean brown seaweed Undaria pinnatifida. Carbohydrate Polymers, 81(1), pp. 41-48.
    Usui, T., Asari, K., Mizuno, T. (1980) Isolation of highly purified “fucoidan” from Eisenia bicyclis and its anticoagulant and antitumor activities. Agricultural and biological chemistry, 44(8), pp. 1965-1966.
    Wang, J., Wang, F., Zhang, Q., Zhang, Z., Shi, X., Li, P. (2009) Synthesized different derivatives of low molecular fucoidan extracted from Laminaria japonica and their potential antioxidant activity in vitro. International journal of biological macromolecules, 44(5), pp. 379-384.
    Wang, J., Zhang, Q., Zhang, Z., Li, Z. (2008) Antioxidant activity of sulfated polysaccharide fractions extracted from Laminaria japonica. International Journal of Biological Macromolecules, 42(2), pp. 127-132.
    Wang, J., Zhang, Q., Zhang, Z., Song, H., Li, P. (2010) Potential antioxidant and anticoagulant capacity of low molecular weight fucoidan fractions extracted from Laminaria japonica. International Journal of Biological Macromolecules, 46(1), pp. 6-12.
    Wang, S., Bi, A. (1994) Clinic observation of fucoidan on patients with hyperlipidaemia. Med. J. Qilu, 16, pp. 173-174.
    Wang, W.T., Zhou, J.H., Xing, S.T., Guan, H.S. (1994) Immunomodulating action of marine algae sulfated polysaccharides on normal and immunosuppressed mice. Chinese Journal of Pharmacology and Toxicology, 8, pp. 199-199.
    WANG, W.J., WANG, G.C., Zhang, M., Tseng, C. (2005) Isolation of fucoxanthin from the rhizoid of Laminaria japonica Aresch. Journal of Integrative Plant Biology, 47(8), pp. 1009-1015.
    Wehr, J.D., Sheath, R. (2003) Brown algae. Freshwater Algae of North America. Academic Press, San Diego, USA, 757773
    Xiaolin, Y. (1995) An experimental study on immunoregulatory effect of fucoidan [j]. Chinese Journal of Marine Drugs, 3, p. 002.
    Yang, C., Chung, D., Shin, I.S., Lee, H., Kim, J., Lee, Y., You, S. (2008) Effects of molecular weight and hydrolysis conditions on anticancer activity of fucoidans from sporophyll of Undaria pinnatifida. International journal of biological macromolecules, 43(5), pp. 433-437.
    Yu, L., Ge, L., Xue, C., Chang, Y., Zhang, C., Xu, X., Wang, Y. (2014) Structural study of fucoidan from sea cucumber Acaudina molpadioides: A fucoidan containing novel tetrafucose repeating unit. Food chemistry, 142, pp. 197-200.
    Yuguchi, Y., Bui, L.M., Takebe, S., Suzuki, S., Nakajima, N., Kitamura, S., Thanh, T.T.T. (2016) Primary structure, conformation in aqueous solution, and intestinal immunomodulating activity of fucoidan from two brown seaweed species Sargassum crassifolium and Padina australis. Carbohydrate polymers, 147, pp. 69-78.
    Zhao, B., Zhang, J., Guo, X., Wang, J. (2013) Microwave-assisted extraction, chemical characterization of polysaccharides from Lilium davidii var. Unicolor Salisb and its antioxidant activities evaluation. Food Hydrocolloids, 31(2), pp. 346-356.
    Zhaojie, L., Changhu, X., Hong, L., Jingfeng, W., Yaopiao, C., Mei, X. (1999) The hypolipidemic effects and antioxidative activity of sulfated fucan on the experimental hyperlipidemia in rats [j]. Acta nutrimenta sinica, 3, p. 005.
    Zhu, W., Ooi, V.E., Chan, P.K., Ang Jr, P.O. (2003) Isolation and characterization of a sulfated polysaccharide from the brown alga Sargassum patens and determination of its anti-herpes activity. Biochemistry and cell biology, 81(1), pp. 25-33.

    無法下載圖示 校內:2021-08-26公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE