簡易檢索 / 詳目顯示

研究生: 卓虹吟
Juo, Hung-Yin
論文名稱: 雷射干涉微影技術搭配光電化學法製作多重通道氮化鋁鎵/氮化鎵金氧半高電子遷移率場效電晶體之研究
Investigation of Multi-Channel AlGaN/GaN MOS-HEMTs Fabricated Using Laser Interference Photolithography Method and Photoelectrochemical Method
指導教授: 李清庭
Lee, Ching-Ting
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 77
中文關鍵詞: 氮化鋁鎵/氮化鎵光電化學法多重通道
外文關鍵詞: AlGaN/GaN MOS-HEMTs, Photoelectrochemical, Multiple-channel
相關次數: 點閱:102下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究多通道AlGaN/GaN高電子遷移率場效電晶體藉由干涉雷射曝光搭配光電化學法完成製作,以光電化學濕式蝕刻法蝕刻多通道能降低元件以反應式離子蝕刻機進行離子轟擊所造成的缺陷,並以光電化學氧化法直接生長氧化層當作閘極絕緣層與表面鈍化層。
    平面式單通道結構與多重通道結構(線寬為500 nm)比較,平面式結構在汲源極電壓(VDS)為10 V和閘源極電壓(VGS)為5 V下,汲源極飽和電流(IDSS)為493 mA/mm,而多通道結構在汲源極電壓為6 V和閘源極電壓為5 V下,汲源極飽和電流為290 mA/mm,而平面式結構與多通道結構之轉導特性分別在汲源極電壓為10 V與6 V時,最大轉移電導值(gm(max))分別為91.3 mS/mm與128 mS/mm,比較平面式結構與多重通道結構可發現臨界電壓(Vth)從-2.3 V至-0.6 V往正偏移,膝點電壓(knee voltage)從10 V變小至6 V與次臨界擺幅(subthreshold swing)也從370 mV/dec降低至189 mV/dec,在RF特性上最大震盪頻率(maximum oscillation frequency, fMax)有所提升。
    再進一步比較線寬為500 nm與200 nm多通道架構,當通道寬度減小,臨界電壓正偏移至-0.4 V,膝點電壓縮小為4 V,最大轉移電導值提升到197 mS/mm,次臨界擺幅則下降至116 mV/dec,閘極漏電流更有效的減少至5.89×10-9 A,最大震盪頻率隨通道寬度遞減也有改善,在此結構下形成的三面閘極結構因比平面式結構多了兩邊之側向電場效應在二微電子氣邊緣,故有效提升閘極控制能力並有較低之膝點電壓與使臨限電壓正偏移。當通道寬度縮減時,環繞電場效應更加明顯,更有效地控制二微電子氣密度,將進一步提升閘極控制力,並使漏電流減少,加快元件切換速度。

    In this research, multiple-channel structured AlGaN/GaN metal-oxide-semiconductor high-electron-mobility transistors were fabricated by using laser interference photolithog-raphy method and photoelectrochemical method. Photoelectrochemical method can avoid damage than that used by RIE. The photoelectrochemical oxidation method can grow ox-ide on the AlGaN layer as gate dielectric film and passivation of the surface. Compare planer structured, we can obviously find the threshold voltage toward the positive bias direction. The drain-source saturation voltage, gate leakage current, subthreshold swing, maximum transconductance and the maximum oscillation frequency are improved.

    摘要 I 目錄 XII 表目錄 XV 圖目錄 XVI 第一章 簡介 1 1.1 氮化鋁鎵/氮化鎵高速電子遷移率電晶體 1 1.2 研究動機 2 1.3 論文架構 4 參考文獻 7 第二章 原理與文獻回顧 10 2.1 氮化鋁鎵/氮化鎵異質結構 10 2.1.1 氮化鋁鎵/氮化鎵異質結構之成長 10 2.1.2 二維電子氣之特性 11 2.2 氮化鋁鎵蝕刻原理 11 2.2.1 光電化學濕式氧化/蝕刻法 11 2.3 金氧半高速電子遷移率電晶體之特性 13 2.3.1 金氧半高速電子遷移率電晶體介紹 13 2.3.2 多通道金氧半高速電子遷移率電晶體介紹 15 2.4 高頻量測下之S參數 16 2.5 電流增益截止頻率 17 2.6 最大震盪頻率 18 2.7 崩潰電壓 19 參考文獻 28 第三章 元件製程及量測儀器 33 3.1 試片結構 33 3.2 元件製作流程 33 3.2.1 雷射干涉微影技術定義多重通道結構 33 3.2.2 高台隔離製作 35 3.2.3 表面硫化處理 37 3.2.4 歐姆接觸電極 37 3.2.5 閘極氧化層成長 39 3.2.6 閘極電極製作 40 3.3 製程及量測儀器 40 3.3.1 雷射干涉微影系統 40 3.3.2 穿透式電子顯微鏡 41 3.3.3 DC電流-電壓量測系統 42 3.3.4 高頻量測系統 43 參考文獻 52 第四章 實驗結果與討論 54 4.1 單通道之高電子遷移率場效電晶體 54 4.1.1 單通道結構之直流特性量測 54 4.1.2 單通道結構之閘極漏電流及崩潰電壓量測 55 4.1.3 單通道結構之高頻特性量測 56 4.2 多重通道之高電子遷移率場效電晶體 56 4.2.1 500 nm多重通道結構之直流特性量測 57 4.2.2 500 nm多重通道結構之閘極漏電流及崩潰電壓量測 58 4.2.3 500 nm多重通道結構之高頻特性量測 58 4.2.4 200 nm多重通道結構之直流特性量測 59 4.2.5 200 nm多重通道結構之漏電流量測及崩潰電壓量測 59 4.2.6 200 nm多重通道結構之高頻特性量測 60 參考文獻 74 第五章 結論 77

    第一章 簡介
    [1]T. P. Chow and R. Tyagi, “Wide bandgap compound semiconductors for superior high-voltage unipolar power devices,” IEEE Trans. Electron Devices., vol. 41, pp. 1481-1483, 1994.
    [2]M. A. Khan, J. M. Van Hove, J. N. Kuznia and D. T. Olson, “High electron mobility GaN/AlxGa1-xN hetrostructures grown by low-pressure etalorganic chemical vapor deposition,” Applied Physics Letters, Vol. 58, pp. 2408-2410, 1991.
    [3]張家華, “異質結構AlGaN/GaN金屬接面特性之研究,”國防大學中正理工學院電子工程研究所碩士論文, 2001.
    [4]L. F. Eastman, V. Tilak, J. Smart, B. M. Green, E. M. Chumbes, R. Dimitrov, H. Kim, O. S. Ambacher, N. Weimann, T. Prunty, M. Murphy, W. J. Schaff and J. R. Shealy, “Undoped AlGaN/GaN HEMTs for microwave power application,” IEEE Trans. Electron Devices., vol. 48, pp. 479-485, 2001.
    [5]F. Sacconi, A. D. Carlo, P. Lugli and H. Morkoc, “Spontaneous and piezoelectric polarization effects on the output characteristics of Al-GaN/GaN heterojunction modulation doped FETs,” IEEE Trans. Electron Devices., vol.48, pp. 450-457, 2001.
    [6]I. P. Smorchkova, C. R. Elsass, J. P. Ibbetson, R. Vetury, B. Heying, P. Fini, E. Haus, S. P. DenBaars, J. S. Speck and U. K. Mishra, “Polarization-induced charge and electron mobility in AlGaN/GaN heterostructures grown by plasma-assisted molecular-beam expitaxy,” J. Appl.Phys., vol. 86, pp. 4520-4526, 1999.
    [7]O. Ambacher, B. Foutz, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, A. J. Sierakowski, W. J. Schaff and L. F. Eastman, “Two dimensional electron gases induced by spontaneous and piezoelectric polarization in undoped AlGaN/GaN heterostructures,” J. Appl. Phys., vol. 87, pp. 334-344, 2000.
    [8]H. Morkoc, A. D. Carlo and R. Cingolani, “GaN-based modulation doped FETs and UV detectors,” Solid-State Electron., vol. 46, pp. 157-202, 2002.
    [9]R. Dimitrov, M. Murphy, J. Smart, W. Schaff, J. R. Shealy and L. F. Eastman, “Two-dimensional electron gases in Ga-face and N-face AlGaN/GaN heterostructures grown by plasma-induced molecular beam epitaxy and Metalorganic chemical vapor deposition on sapphire,” J. Appl. Phys., vol. 87, pp. 3375-3380, 2000.
    [10]O. Ambacher, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, W. J. Schaff and L. F. Eastman, “Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures,” J. Appl. Phys., vol. 85, pp. 3222-3233, 1999.
    [11]S. Liu, Y. Cai, G. Gu, J. Wang, C. Zeng, W. Shi, Z. Feng, H. Qin, Z. Cheng, K. J. Chen and B. Zhang “Enhancement-mode operation of nanochannel array (NCA) AlGaN/GaN HEMTs,” IEEE Electron Device Lett., vol. 33, pp. 354-356, 2012.
    [12]K. Ohi, J. T. Asubar, K. Nishiguchi and T. Hashizume, “Current stability in multi-mesa-channel AlGaN/GaN HEMTs,” IEEE Trans. Electron Devices, vol. 60, pp. 2997-3004, 2013.
    [13]Y. W. Jo, D. H. Son, C. H. Won, V. Sindhuri, J. H. Kim, J. H. Seo, I. M. Kang and J. H. Lee, “Control of transconductance in high performance AlGaN/GaN FinFETs,” IEEE PEDS, pp. 684-686, 2015.
    第二章 原理與文獻回顧
    [1]O. Ambache, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, W. J. Schaff, L. F. Eastman, R. Dimitrov, L. Wittmer, M. Stutzmann, W. Rieger and J. Hilsenbeck, “Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures,” J. Appl. Phys., vol. 85, pp. 3222-3233, 1999.
    [2]O. Ambacher, B. Foutz, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, A. J. Sierakowski, W. J. Schaff, L. F. Eastman, R. Dimitrov, A. Mitchell and M. Stutzmann, “Two dimensional electron gasinduced by spontaneous and piezoelectric polarization inundoped and doped AlGaN/GaN heterostructures,” J. Appl. Phys., vol. 87, pp. 334-344, 2000.
    [3]I. P. Smorchkova, C. R. Elsass, J. P. Ibbetson, R. Vetury, B. Heying, P. Fini, E. Haus, S. P. DenBaar, J. S. Speck and U. K. Mishra, “Polarization-induced charge and electron mobility in AlGaN/GaN heterostructures grown by plasma-assisted molecular-beam epitaxy,” J. Appl. Phys., vol. 86, pp. 4520-4526, 1999.
    [4]F. Sacconi, A. D. Carlo, P. Lugli and H. Morkoc, “Spontaneous and piezoelectric polarization effects on the output characteristics of AlGaN/GaN heterojunction modulation doped FETs,” IEEE Trans. Electron Devices., vol. 48, pp. 450-457, 2001.
    [5]M. A. Khan, M. S. Shur, J. N. Kuzunia, Q. Chen, J. Burm and W. Schaff, “Temperature activated conductance in GaN/AlGaN heterostructure field effect transistors operating at temperatures up to 300oC,” Appl. Phys. Lett., vol. 66, pp. 1083-1085, 1995.
    [6]E. H. Chen, D. T. Mclnturff, T. P. Chin, M. R. Melloch and J. M. Woodall, “Use of annealed low-temperature grown GaAs as a selective photoetch-stop layer,” Appl. Phys. Lett., vol. 68, pp. 1678-1680, 1996.
    [7]L. H. Huang and C. T. Lee, “Investigation and analysis of AlGaN MOS devices with an oxidized layer grown using the photoelectrochemical oxidation method,” J. Electrochem. Soc., vol. 154, pp. 862-866, 2007.
    [8]B. Gaffey, L. J. Guido, X. W. Wang and T. P. Ma, “High-quality oxide/nitride/oxide gate insulator for GaN MIS structures,” IEEE Trans. Elec. Devices., vol. 48, pp. 458-464, 2001.
    [9]K. Ohi, J. T. Asubar, K. Nishiguchi and T. Hashizume, “Current Stability in multi-mesa-channel AlGaN/GaN HEMTs,” IEEE Trans. Elec.Device., vol. 60, pp. 2997-3004, 2013.
    [10]J. W. Chung, T. W. Kim and T. Palacios, “Advanced gate technologies for state-of-the-art fT in AlGaN/GaN HEMTs,” IEDM Tech. Dig., vol. 10, pp. 676-679, 2010.
    [11]E. Y. Chang, C. I. Kuo, H. T. Hsu, C. Y. Chiang and Y. Miyamoto, “InAs thin-channel high-electron-mobility transistors with very high current-gain cutoff frequency for emerging submillimeter-wave applications,” Jpn.J.Appl.Phys., vol. 6, pp. 034001-1-034001-3, 2013.
    [12]S. J. Yeon, M. Park, J. Choi and K. Seo, “610 GHz InAlAs/In0.75GaAs metamorphic HEMTs with an ultra-short 15-nm-gate,” IEDM Tech. Dig., vol. 07, pp 613-616, 2007.
    [13]Y. Yamashita, A. Endoh, K. Shinohara, M. Higashiwaki, K. Hikosaka, T.Mimura, S. Hiyamizu and T. Matsui, “Ultra-short 25-nm-gate lattice-matched InAlAs/InGaAs HEMTs within the range of 400 GHz cutoff frequency,” IEEE Electron Device Lett., vol. 22, pp. 367-369, 2001.
    [14]K. L. Tan, R. M. Dia, D. C. Streit, T. Lin, T. Q. Trinh, A. C. Han, P. H. Liu, P. D. Chow and H. C. Yen, “94-GHz 0.1-μm T-gate low-noise pseudomorphic InGaAs HEMTs,” IEEE Trans. Electron Devices., vol. 11, pp. 585-587, 1990.
    [15]K. Nummila, A. A. Ketterson, S. Caracci, J. Kolodzey and I. Adesida, “Short-channel effects in sub-100 nm GaAs MESFETS,” IEEE Trans. Electron Devices., vol. 27, no. 17, pp. 1519-1521, 1991.
    [16]L. D. Nguyen, A. S. Brown, A. A. Thompson and L. M. Jelloian, “50-nm self-aligned-gate pseudomorphic AlInAs/GaInAs,” IEEE Trans. Electron Devices., vol. 39, pp. 1519-1521,1992.
    [17]V. Kilchytska, A. Neve, L. Vancaillie, D. Levacq, S. Adriaensen, H. V. Meer, K. D. Meyer, C. Raynaud, M. Dehan, J. P. Raskin and D. Flandre, “Influence of device engineering on the analog and RF performance of SOI MOSFETs,” IEEE Electron Device Lett., vol. 50, pp. 577-588, 2003.
    [18]F. Medjdoub, J. Derluyn, K. Cheng, M. Leys, S. Degroote, D. Marcon, D. Visalli, M. Van Hove, M. Germain and G. Borghs, “Low on-resistance high-breakdown normally off AlN/GaN/AlGaN DHFET on Si substrate,” IEEE Electron Device Lett., vol. 31, pp. 111-113, 2010.
    [19]S. Karmalkar and U. K. Mishra, “Enhancement of breakdown voltage in AlGaN/GaN high electron mobility transistors using a field plate,” IEEE Trans. Electron Devices., vol. 48, pp. 1515-1521, 2001.
    [20]H. Xing, Y. Dora, A. Chini, S. Heikman, S. Keller and U. K. Mishra, “High breakdown voltage AlGaN-GaN HEMTs achieved by multiple field plates,” IEEE Electron Device Lett., vol. 25, pp. 161-163, 2004.
    [21]Y. L. Chiou, L. H. Huang and C. T. Lee, “Photoelectrochemical function in gate-recessed AlGaN/GaN metal-oxide-semiconductor high-electron-mobility,” IEEE Electron Device Lett., vol. 31, pp. 183-185, 2010.
    第三章 元件製程及量測儀器
    [1]P. E. Riley, “Plasma etching of aluminum metallizations for ultra-largescale integrated circuits,” J. Electrochem. Soc., vol. 140, pp. 1518-1522, 1993.
    [2]S. K. Ghandhi, VLSI fabrication principles, John Wiley & Sons, p. 635, 1994.
    [3]C. T. Lee, Y. J. Lin and C. H. Lin, “Nanalloyed ohmic mechanism of TiN interfacial layer in Ti/Al contact to (NH4)2Sx-treated n-type GaN layers,” J. Appl. Phys., vol. 92, pp. 3825-3829, 2002.
    [4]S. J. Lee and C. R. Crowell, “Parasitic source and drain resistance in high-electron-mobility transistor,” Solid-State Electron., vol. 28, pp. 659-668, 1985.
    [5]Q. Z. Liu, L. S. Yu, F. Deng, S. S. Lau, Q. Chen, J. W. Yang and M. A. Khan, “Study of contact formation in AlGaN/GaN heterostructures,” Appl. Phys. Lett., vol. 71, pp. 1658-1660, 1997.
    [6]M. E. Lin, Z. Ma, F. Y. Huang, Z. F. Fan, L. H. Allen and H. Morkoç, “Low resistance ohmic contacts on wide band-gap GaN,” Appl. Phys. Lett., vol. 64, pp. 1003-1005, 1994.
    [7]M. Kanamura, T. Ohki, T. Kikkawa, K. Imanishi, T. Imada, A. Yamada and N. Hara, “Enhancement-mode GaN MIS-HEMTs with n-GaN/i-AlN/n-GaN triple cap layer and high-k gate dielectrics,” IEEE Electron Device Lett., vol. 31, pp 189-191, 2010.
    [8]Y. L. Chiou and C. T. Lee, “Band alignment and performance im-provement mechanisms of chlorine-treated ZnO-Gate AlGaN/GaN metal-oxide-semiconductor high-electron mobility transistors,” IEEE Trans. Electron Devices., vol. 58, pp 3869-3876. 2011.
    [9]C. H. Choi and C. J. Kim, “Fabrication of a dense array of tall nanostructures over a large sample area with sidewall profile and tip sharpness control,” Nanotech., vol. 17, pp. 5326-5333, 2006.
    [10]J. D. Boor, N. Geyer, U. Gösele and V. Schmidt, “Three-beam interference lithography:Upgradinga Lloyd’s interferometer for single-exposure hexagonal patterning,” Opt. Lett., vol. 34, pp. 1783-1785, 2009.
    第四章 實驗結果與討論
    [1]L. H. Huang and C. T. Lee, “Investigation and analysis of AlGaN MOS devices with an oxidized layer grown using the photoelectrochemical oxidation method,” Journal of The Electrochemical Society., vol. 154, pp. 862-866, 2007.
    [2]S. Arulkumaran, T. Egaway, L. Selvaraj and H. Ishikawa, “On the effects of gate-recess etching in current-collapse of different cap layers grown AlGaN/GaN high-electron-mobility-transistors,” Jpn. J. Appl. Phys., vol. 45, pp. 220-223, 2006.
    [3]K. S. Im, C. H. Won, J. H. Seo, I. M. Kang, S. Vodapally, Y. S. Lee and J. H. Lee, “Novel AlGaN/GaN Omega-FinFETs with Excellent Device Performances,” Solid-State Device Research Conference (ESSDERC), 2016 46th European.
    [4]Srivastava, V. M., and Singh, “Analysis and Design of Tri-gate MOSFET with High Dielectrics Gate,” in Proc. Eur. Microw. Integr. Circuit Conf. (EuMIC), India, pp. 16-22, 2012.
    [5]K Ohi, J T Asubar, K Nishiguchi and T Hashizume, “Current stability in multi-mesa-channel AlGaN/GaN HEMTs,” IEEE Trans. Elec.Device., vol. 60, pp. 2997-3004, 2013.
    [6]R. J. Trew, D. S. Green and J. B. Shealy, “AlGaN/GaN HFET reliablity,” IEEE microwave magazine., vol. 07, pp. 116-127, 2009.
    [7] J. H. Seo, Y. W. Jo, Y. J. Yoon, D. H. Son, C. H. Won and H. Y. Jang, “Al(In)N/GaN Fin-Type HEMT with very-low leakage current and enhanced I-V characteristic for switching applications,” IEEE Electron Device Lett., vol. 37, pp 855-858, 2016.
    [8]S. Liu, Y. Cai, G. Gu, J. Wang, C. Zeng, W. Shi, Z. Feng, H. Qin, Z. Cheng and K. J. Chen, “Enhancement-Mode Operation of Nanochannel Array (NCA) AlGaN/GaN HEMTs,” IEEE Electron Device Lett., vol. 33, pp 354-356. 2012.
    [9]J. H. Seo, Y. W. Jo, Y. J. Yoon, D. H. Son, C. H. Won, H. S. Jang, I. M. Kang and J. H. Lee, “Al(In)N/GaN Fin-Type HEMT With Very-Low Leakage Current and Enhanced I –V Characteristic for Switching Applications,” IEEE Electron Device Lett., vol. 37, pp 855-858. 2016.
    [10]M. Alsharef, M. Christiansen, R. Granzner, E. Ture and R. Quay, “RF Performance of Trigate GaN HEMTs,” IEEE Trans. Electron Devices., vol. 63, pp 4255-4261. 2016.
    [11]W. Jatal, U. Baumann, H. O. Jacobs, F. Schwierz and J. Pezoldt, “Enhancement- and depletion-mode AlGaN/GaN HEMTs on 3C-SiC(111)/Si(111) pseudosubstrates,” Phys. Status Solidi A, vol. 214, pp 1600415(1-7). 2017.
    [12]E. Ture and P. Brückner, F. V. Raay, R. Quay, and O. Ambacher, “Performance and Parasitic Analysis of Sub-micron Scaled Tri-gate AlGaN/GaN HEMT Design,” in Proc. Eur. Microw. Integr. Circuit Conf. (EuMIC), Paris, France, pp. 97-100, 2015.
    [13]K. Ohi and T. Hashizume, “Drain current stability and controallability of threshold voltage and subthreshold current in a multi-mesa-channel AlGaN/GaN hight electron mobility transistor,” Jpn. J. Appl. Phys., vol. 48, pp. 081002-081002-5, 2009.
    [14]S. Takashima, “Sidewall dominated characteristics on Fin-gate Al-GaN/GaN MOS-Channel-HEMTs,” IEEE Trans. Electron Devices., vol. 60, pp 3025-3031. 2013.

    無法下載圖示 校內:2022-07-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE