| 研究生: |
曹志豪 Tsao, Chih-Hao |
|---|---|
| 論文名稱: |
聚矽氧烷與聚丙烯腈/聚氧乙烯複合膜合成與鋰離子傳導特性 Synthesis and Properties of Polysiloxane Cross-linked Polyacrylonitrile/Poly(ethylene oxide) Hybrid Membranes for Lithium Ion Conduction |
| 指導教授: |
郭炳林
Luo, Ping-Lin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 78 |
| 中文關鍵詞: | 聚丙烯腈共聚高分子 、聚二甲基矽氧烷 、鋰電池 、高分子電 解質 |
| 外文關鍵詞: | Lithium-ion battery, polymer electrolyte, polyacrylonitrile |
| 相關次數: | 點閱:104 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用氧化還原聚合反應製備嵌段(聚丙烯腈-聚氧乙烯-聚 丙烯腈)共聚高分子,經由FT-IR 以及1H-NMR 鑑定,再加入聚二甲基矽氧烷與聚氧乙烯製成交聯型高分子複合膜,其電化學穩定度高達4.8 V且裂解溫度大約在250 oC,藉由添加不同聚二甲基矽氧烷的量,由SEM可觀察由於相變化於高分子表面產生了孔洞,隨著添加聚二甲基矽氧烷含量增加,孔洞有變多且變大之趨勢,雖然DSC圖譜顯示添加聚二甲基矽氧烷會使得PEO 自我聚集反而造成其結晶熱上升,但由XRD可觀察聚二甲基矽氧烷添加有效的破壞了PAN 的結晶,因此在PAN 為主體的高分子電解質中,其室溫離子傳導度從未添加聚二甲基矽氧烷時3.157 x10-4 S/cm 大幅提升6.736 x10-4S/cm ,提升了超過114 % ,而在鋰離子遷移數上也可高達0.72,由鋰電池辦電池測試結果放電電容於0.1C 可達150 mAh g-1,甚至5C也還可以維持80 mAh g-1 ,可得知其為一提升鋰離子傳導度且有實際應用價值之高分子鋰電池電解質。
Synthesis of PAN-PEO-PAN block copolymer with diamine functional group via redox polymerization has been accomplished and characterized with FT-IR and 1H-NMR analysis. Then the copolymer react with poly(dimethylsiloxane) and PEGDE for polymer electrolytes, it has great electrochemical window and thermal stability up to 4.5V and 250 oC. The surface characterization of membranes could be seen by SEM, indicated that it has many pores on the polymer surface, and pores will increase as the polysiloxane contents increase. The DSC result, indicates that the PEO crystallinity is increasing because of adding polysiloxane will lead PEO to aggregate and make small phase separation.
But the crystallization of PAN is deteriorated by adding polysiloxane as a
result of XRD. The ionic conductivity of polymer electrolyte with
polysiloxane can be enhanced to 3.157 x10-4 S/cm, compared to that of
the polymer of none polysiloxane (6.736 x10-4 S/cm). Furthermore,
Li-ion transport number can be up to 0.72. For battery application, under
all charge/discharge rates (from 0.1 to 5 C), the specific half-cell
capacities of hybrid polymer electrolyte can be up to 150 mAh g-1 at 0.1C and 80 mAh g-1 at 5C. The advantageous properties of the membrane allow it to act as both an ionic conductor as well as a separator .
1. K. Mizushima, P.C. Jones, P.J. Wiseman, and J.B. Goodenough. Mater. Res. Bull. 15 ,6, 783–799, 1980
2. G. C. Kuczynski, Trans. Am. Inst. Min. (Metall.) Eng., 185, 169, 1949
3. S. Y. Chung, J. T. Bloking, Y. M. Chiang, Nat. Mater. 1, 123, 2002
4. J. M. Tarascon, M. Armand, Nature, 414, 359-367. 2001
5. 產業經濟與趨勢研究中心“鋰電池產業in 2013 報告”, 2012
6. 工業材料雜誌290期
7. Toprakci, O.; Toprakci, H. A. K.; Ji, L. W. ; Zhang, X. W. KONA Powder. Part. J. 28, 50-73, 2010
8. Wright, P.V.; Fenton, D. E.; Parke, J. M.; Polymer, 14, 589. 1973
9. Armand, M. Annu. Rev. Mater, Sci., 245, 4, 1986
10. 楊家諭,工業材料雜誌,第122 期,86 年2 月
11. D. F. Shriver, M. A. Ratner, Chem. Rev., 88, 109, 1988
12. PG. Bruce T , Electrochem. Acta. 40:2077. 1995
13. J. W. Fergus, J. Power Sources, 195, 4554, 2010
14. R. C. Agrawal and G. P. Pandey, J. Phys. D: Appl. Phys.,41, 223001, 2008
15. G. S. MacGlashan, Y. G. Andreev and P. G. Bruce, Nature,398, 792 , 1999.
16. J. Evans, C. A. Vincent, and P. G. Bruces, Polymer, 28 , 2324, 1987.
17. P. G. Bruces, M. T. Hardgrave, and C. A. Vincent, Solid state Ionics, 53-56, 1087 , 1992.
18. I. I. Olsen, R. Koksbang, E. Skou, Electrochim. Acta., 40,1701, 1995.
19. M. Doyle, T. F. Fuller, and J. Newman, Electrochim. Acta., 39,2073 , 1994.
20. F. Croce, S. D. Brown, S. G. Greenbaum, S. M. Slane, M. Salomon , Chem. Mater., 5, 1268. , 1993
21. Z. Wang, B. Huang, S. Wang, R. Xue, X. Huang, L. Chen, J.Electrochem. Soc., 144, 778 , 1997.
22. Z. Wang, B. Huang, R. Xue, X. Huang, L. Chen, Solid State Ionics, 121, 141 , 1999.
23. L. H. Sperling, “Introduction to Physical Polymer Science”, 2nd ed., p.382-457, John Wiley & Sons, New York, USA, 1993.
24. A. M. Stephan, Eur. Polym. J., 42, 21 , 2006.
25. J. M. Tarascon, A. S. Gozdz, C. Schmutz, F. Shokoohi and P. C. Warren, Solid State Ionics, 86–88, 49 , 1996.
26. C. Capiglia, Y. Saito, H. Kataoka, T. Kodama, E. Quartaroneand P. Mustarelli, Solid State Ionics, 131, 291, 2000.
27. K.M. Abraham, M. Alamgir, J. Electrochem. Soc. 137,1657, 1990.
28. K.M. Abraham, M. Alamgir, US Patent No 5,219,679, 1993.
29. Z. Wang, B. Huang, H. Huang, L. Chen, R. Xue, R.F. Wang, Electrochim. Acta. 41,1443, 1996.
30. G.B. Appetecchi, B. Scrosati., Electrochim. Acta. 43, 1105, 1998.
31. Z. Wang, B Huang, H. Huang, R. Xue, L. Chen, F.A. Wang, J Electrochem. Soc.143:1510, 1996.
32. H.S. Choe, B.G. Carroll, D.M. Pasquarillo, K.M. Abraham., Chem. Mater., 9,369, 1997.
33. H. Akashi, K. Sakai, K. Tanaka., Electrochim. Acta., 43, 1193, 1998.
34. G.B. Appetecchi, F. Croce, B. Scrosati., Electrochim. Acta., 40, 991, 1995
35. O. Toprakci, H. A. K .Toprakci, L. W. Ji, X. W. Zhang, KONA Powder. Part. J., 28, 50-73, 2010.
36. H. F.Wang, Y. I. Jang, B. Y. Huang, D. R. Sadoway, Y. M. Chiang, J. Electrochem. Soc., 146, 473-480, 1999
37. L. B. Ebert, Annu. Rev. Mater. Sci., 6, 181-211, 1976.
38. J. O. Besenhard, J. Power Sources, 77, 267-276 , 1976.
39. G. K. Wertheim, P. M. Th. M. Van Attekum, S. Basu, Solid State Comm., 33, 1127-1130, 1980.
40. V. A. Nalimova, D. Guérard, M. Lelaurain, O. V. Fateev, Carbon , 2, 177-181, 1995.
41. J. Jiang; J. R. Dahn, Electrochim. Acta ., 49, 4599-4604, 2004.
42. K. Xu, Chem. Rev., 104, 4303-4417, 2004.
43. Boukamp, B. A.; Lesh, G. C.; Huggins, R. A. J. Electrochem. Soc., 128, 725-729, 1981.
44. S. M. Hwang, H. Y. Lee, S. M. Jang, S. J. Lee, H. K. Baik, J. Y. Lee, Electrochem. Solid-State Lett. 4, A97-A100 , 2001.
45. G. A. Robert, E. J. Cairns, J. A. Reimer, J. Power Sources., 110, 424-429, 2002.
46. I. Kim, G. E. Blomgren, P. N. Kumta, J. Power Sources, 130, 275-280. 2004.
47. P. Patel, I. Kim, P. N. Kumta, Mat. Sci. Eng. B-Solid ., 116, 347-352, 2005.
48. Kim, I.; Kumta, P. N.; Blomgren, G. E. Electrochem. Solid-State Lett., 3, 493-496, 2000.
49. Kim, I.; Blomgren, G. E.; Kumta, P. N. Electrochem. Solid-State Lett. 6, A157-A161, 2003.
50. W. R. Liu, J. H. Wang, H. C. Wu, D. T. Shieh, M. H. Yang, N. L. Wu, J. Electrochem. Soc., 152, A1719-A1725, 2005.
51. J. Xie, G. S. Cao, X. B. Zhao, Mater. Chem. Phys., 88, 295-299, 2004.
52. M. Holzapfel, H. Buqa, F. Krumeich, P. Novák, F.M. Petrat,; C. Veitc, Electrochem. Solid-State Lett., 8, A516-A520, 2005.
53. T. F. Yi, L. J. Jiang, J. Shu, C. B. Yue, R. S. Zhu, H. B. Qiao, J. Phys. Chem. Solids, 71, 1236-1242, 2010.
54. H.S. Xu , C.Z. Yang, J. Polym. Sci, part B, 33, 5, 745-751, 1995.
55. Li Jean and Khan, M. Ishrat, Macromolecules, 26,4544-4550, 1993.
56. G. T. K. Fey, J. R. Dahn, J. Electrochem. Soc., 141,2279. , 1994.
57. R. Spindler, D. F. Shriver, J. Am. Chem. Soc., 110, 3036, 1988.
58. S. Ganapathiappan, K. Chen, D. F. Shriver, J. Am. Chem. Soc., 111, 4091, 1989.
59. R. Frech , A. Bernson , J. Lindgren , W. Huang , Polymer, 36, 23, 4471-4478., 1995.
60. 鄭宗田,張憲彰,溫添進, 化學, 第53 卷第四期, 359∼368 頁, 1995.
61. P. G. Bruce, J. Evans, C. A. Vincent, Solid State Ionics, 28–30, 918, 1988.
校內:2018-08-16公開