| 研究生: |
陳君瑋 Chen, Chun-Wei |
|---|---|
| 論文名稱: |
釕合金薄膜作為積體電路內連線系統中擴散阻障層/銅晶種層之應用與分析 Characteristics of Ru alloy thin films and their applications as the diffusion barrier/Cu-seed layer in integrated circuits |
| 指導教授: |
陳貞夙
Chen, Jen-Sue |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 154 |
| 中文關鍵詞: | 擴散阻障層 、銅晶種層 、釕合金薄膜 、微結構 |
| 外文關鍵詞: | diffusion barrier, Cu-seed layer, Ru alloy thin film, microstructure |
| 相關次數: | 點閱:83 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主要探討釕合金薄膜作為積體電路內連線系統中擴散阻障層/銅晶種層之應用與分析。各種釕合金薄膜(15奈米厚之釕-氮、釕-鉭、釕-鉭-氮與5奈米厚之釕-碳)為利用雙槍磁控濺鍍法製備,並以純釕薄膜作為對照組;吾人首先檢測各釕合金薄膜之材料特性,以拉賽福背向式散射儀分析合金薄膜中之各元素組成比例,以低掠角X光繞射儀及四點探針量測薄膜初鍍及經過不同溫度、30分鐘退火處理後之相結構與片電阻值變化,並得到該薄膜之電阻率;吾人再將各釕合金薄膜沉積於矽或二氧化矽/矽之基板上並覆蓋上銅薄膜製成銅/阻障層/基板疊層結構,將疊層試片進行400至900 oC真空退火處理後,來觀察各擴散阻障層之對銅阻障能力,先以低掠角X光繞射儀及四點探針量測疊層試片之微結構與片電阻值變化,再以歐傑電子能譜儀與二次離子質譜儀分析試片中各元素訊號的縱深分佈與各摻雜原子(氮、鉭及碳等)之熱穩定性,而後以穿透式電子顯微鏡觀察試片的相結構與界面性質變化;另外並以無銅薄膜覆蓋之阻障層直接進行電鍍銅測試,以觀察釕合金薄膜同時作為銅晶種層之效用,並以掃描式電子顯微鏡與原子力顯微鏡來觀察直接電鍍所得之銅薄膜的表面形態與表面粗糙度;最後,再以量測銅原子在阻障層中之擴散活化能,藉以定量的表示阻障層薄膜對銅阻障能力之優劣。
實驗結果顯示,15奈米厚之釕-鉭-氮與5奈米厚之釕-碳薄膜具有最優異之對銅阻障能力,最高可阻擋銅原子在疊層試片經過700 oC、30分鐘退火處理後仍不會擴散進入下層結構,而15奈米厚之釕-鉭、釕-氮與純釕薄膜則依序可阻擋銅原子在疊層試片經過600、500及400 oC退火處理後之擴散。各薄膜對銅阻障能力之優劣主要為受薄膜之微結構所影響;純釕薄膜具有高度結晶性結構,而將鉭或氮摻雜進入釕薄膜後,釕-鉭與釕-鉭-氮薄膜之相結構轉變為奈米微晶或非晶質結構,將可減少銅原子透過阻障層薄膜晶界擴散之機會;而厚度較薄之釕-碳薄膜雖具結晶性之結構,但由於小原子半徑之C元素添加使得釕-碳薄膜具有與非晶質釕-鉭-氮薄膜相同之阻障能力。另外,隨著薄膜結晶性的減低將伴隨著提高薄膜之電阻率,而若將銅/阻障層雙層結構製備於矽或二氧化矽/矽基板上,則無明顯阻障層表現之差異。
各釕合金薄膜作為銅晶種層之測試結果顯示,銅薄膜皆可在所有本研究中之各釕合金薄膜上直接電鍍生成,且所生成之銅薄膜皆具有(111)之優選方向,將有利於提高其抗電致遷移能力;各電鍍銅薄膜之表面粗糙度略有差異,其可能原因為阻障層薄膜之微結構與電阻率差異,或電鍍槽中之化學添加物所造成。
對於以定量方式來評估阻障層薄膜對銅阻障能力之表現上,吾人以四點探針與X光繞射圖譜兩分析方法來測試試片在不同退火溫度下之失效時間,並配合擴散與阿瑞尼氏方程式來得到銅原子在阻障層中之擴散係數與擴散活化能;其結果顯示銅原子在釕-碳薄膜中擴散所需活化能為1.11 eV,而銅原子在純釕膜薄中擴散只需活化能0.54 eV,映證本研究中之釕-碳薄膜之對銅阻障能力確實較純釕薄膜優異。
本研究的結果顯示,在阻障層厚度、對銅阻障能力與可直接電鍍銅等性質表現之考量上,5奈米厚之釕-碳薄膜為最具有可取代現有之銅晶種層/氮化鉭/鉭三層結構之優勢。
In this study, the characteristics of Ru alloy thin films and their applications as the diffusion barrier/Cu-seed layer for interconnect in integrated circiuts are explored. The 15 nm Ru-N, Ru-Ta and Ru-Ta-N and 5 nm Ru-C thin films used in this study were prepared by reactive co-sputtering. For the comparison, pure Ru films were prepared under the same deposition condition. Material characteristics of the Ru alloy thin films were examined by Rutherford backscattering spectrometry (RBS) for the elemental composition. Microstructural evaluation and sheet resistance variation of the Ru alloy films before and after annealing at different temperatures for 30 min were explored by glanzing incident angle X-ray diffraction (GIAXRD) and four point probe. To evaluate the barrier perfomance of Ru alloy films against Cu diffusion, the barrier films on Si or SiO2/Si substrates were covered by Cu films and the Cu/barrier/substrate film stacks were subsequently annealed at 400-900 oC in vacuum. The elemental depth profiles of the film stacks and the thermal stability of the added element in the barrier films were examined by Auger electron spectroscopy (AES) and second ion mass spectrometer (SIMS). Transmission electron microscopy (TEM) was used to further explore the microstructure of the films and the interfaces between Cu, barrier and substrate. Surface morphology and the root-mean-square roughness of direct electrochemical plating Cu films on barrier layers were examined by scanning electron microscopy (SEM) and atomic force microscopy (AFM), respectively. Finally, the activation energy of Cu diffusion in barrier layer was measured to estimate the barrier performacne quantitatively.
The experimental results reveal that the 15 nm Ru-Ta-N and 5 nm Ru-C films have the best barrier performacne against Cu diffusion. The two barriers can prevent the diffusion of Cu into underlayers when the Cu/barrier/substrate samples were annealed at 700 oC for 30 min. The 15 nm Ru-Ta, Ru-N and Ru films can prevent the diffusion of Cu after annealing the samples at 600, 500 and 400 oC for 30 min, respectively. The performance of the barrier films should be related to their microstructure. The Ru film is highly crystalline. By adding the Ta or N into the Ru matrix, the crystal structures of Ru-Ta and Ru-Ta-N are changed to nanocrystalline or amouphous, which would prevent the diffusion of Cu through the grain boundaries. Although the 5 nm Ru-C film is also crystalline, the C atoms with small atomic radius shall effectively stuff on the grain boundaries of Ru-C grains and make the 5 nm Ru-C film has the same barrier performance with 15 nm amorphous Ru-Ta-N film. In addition, the resistivity values of Ru-C and Ru-Ta-N are 119 and 570.0 μΩ-cm, respectively, which promises both as conductive barrier layers.
For the direct electrochemical plating of Cu on Ru alloy films, all Ru alloy films examined in this study can be successfully used as Cu-seed layer and the electroplated Cu films have (111) preferred orientation. The surface roughnesses of the Cu films on various Ru alloy films were different, probably due to difference of the microstructure and the resistivity of Ru alloy films, or the chemical additives in electrochemical bath.
To quantitatively estimate the diffusivity of Cu in the Ru alloy barriers, the onset of the Cu-Si formation as a function of annealing temperatures in the Cu/barrier/Si samples is detected by sheet resistance variation and XRD analysis and as an indication of Cu diffusion through the barrier. By fitting the dependence of diffusivities on temperatures, the activation energy for Cu diffusion in Ru-C film is 1.11 eV, which is substantially higher than that in Ru film (0.54 eV), which confirms the superior diffusion barrier performace of Ru-C film.
In summary, the 5 nm Ru-C film will be a highly promising diffusion barrier/Cu-seed layer for Cu metallization to scale down the interconnection dimensions and simplify the fabrication processes.
1. International Technology Roadmap for Semiconductors, 2005 edition, Semiconductor Industry Association.
2. S. P. Murarka, I. V. Verner, and R. J. Gutmann, Copper-Fundamental Mechanisms for Microelectronic Applications, (John Wiley & Sons, USA, 2000).
3. D. A. Neamen, Semiconductor Physics & Devices: Basic Principles, 2nd ed., (McGraw-Hill, USA, 1997).
4. P. S. Ho, J. Leu, and W. W. Lee, Low Dielectric Constant Materials for IC Applications, (Springer, Berlin, Germany, 2003).
5. S. P. Murarka, R. J. Gutmann, A. E. Kaloyeros and W. A. Lanford, Advanced multilayer metallization schemes with copper as interconnection metal, Thin Solid Films 236, 257 (1993).
6. C. W. Park and R. W. Vook, Activation energy for electromigration in Cu films, Appl. Phys. Lett. 59, 175 (1991).
7. K. Wetzig and C. M. Schneider, Editor-in-Chief, Metal Based Thin Films for Electronics, (Wiley-VCH GmbH & Co. KGaA, Weinheim, 2003).
8. J. D. McBrayer, R. M. Swanson, and Y. W. Sigmon, Diffusion of metals in silicon dioxide, J. Electrochem. Soc. 133, 1242 (1986).
9. S. Q. Hong, C. M. Comrie, S. W. Russell, and J. W. Mayer, Phase Formation in Cu-Si and Cu-Ge, J. Appl. Phys. 70, 3655 (1992).
10. A. Broniatowski, Multicarrier trapping by copper microprecepitates in silicon, Phys. Rev. Lett. 62, 3074 (1989).
11. M. W. Lane, C. E. Murray, F. R. McFeely, P. M. Vereecken, R. Posenberg, Liner materials for direct electrodeposition of Cu, Appl. Phys. Lett. 83, 2330 (2003).
12. J. Emsley, The Elements, (Oxford University Press, New York, 1989).
13. T. B. Massalski, Editor-in-Chief, Binary Alloy Phase Diagrams, 2nd ed. (AMS International, Materials Park, OH, 1990).
14. O. Chyan, T. N. Arunagiri, T. Ponnuswamy, Electrodeposition of Copper Thin Film on Ruthenium, J. Electrochem. Soc. 150, C347 (2003).
15. R. Chen, T. N. Arunagang, O. Chyan, R. M. Wallace, M. J. Kim, T. Q. Hurd, Diffusion Studies of Copper on Ruthenium Thin Film, Electrochem. Solid-State Lett. 7, G154 (2004).
16. D. Josell, D. Wheeler, C. Witt, T. P. Moffat, Seedless Superfill: Copper Electrodeposition in Trenches with Ruthenium Barriers, Eletrochem. Solid-State Lett. 6, C143 (2003).
17. T. N. Arunagiri, Y. Zheng, O. Chyan, M. J. Kim, T. Q. Hurd, Interfacial Diffusion Studies of Cu/(5 nm Ru)/Si Structures, J. Electrochem. Soc. 152, G808 (2005).
18. X. P. Qu, J. J. Tan, M. Zhou, T. Chen, Q. Xie, G. P. Ru, and B. Z. Li, Improved barrier properties of ultrathin Ru film with TaN interlayer for copper metallization, Appl. Phys. Lett. 88, 151912 (2006).
19. M. Damayanti, T. Sritharan, S. G. Mhaisalkar, Z. H. Gan, Effects of dissolved nitrogen in improving barrier properties of ruthenium, Appl. Phys. Lett. 88, 044101 (2006).
20. D. K. Kwak, H. B. Lee, J. W. Han, and S. W. Kang, Metalorganic Chemical Vapor Deposition of Copper on Ruthenium Thin Film, Electrochem. Solid-State Lett. 9, C171 (2006).
21. S. Venkatesan, A. V. Gelatos, V. Misra, B. Smith, R. Islam, J. Cope, B. Wilson, D. Tuttle, R. Cardwell, S. Anderson, M. Angyal, R. Bajaj , C. Capasso, P. Crabtree, S. Das, J. Farkas, S. Filipiak, B .Fiordalice, M. Freeman, P. V. Gilbert, M. Herrick, A. Jain, H. Kawasaki, C. King, J. Klein, T. Lii, K. Reid, T. Saaranen, C. Simpson, T. Sparks, P. Tsui, R. Venkatraman, D. Watts, E. J. Weitzman, R. Woodruff, I. Yang, N. Bhat, G. Hamilton and Y. Yu, A High Performance 1.8V, 0.20 μm CMOS Technology with Copper Metallization, IEDM 769 (1997).
22. H. Xiao, Introduction to Semiconductor Manufacturing Technology, 2nd ed., (Prentice-Hall Inc., New Jersey, USA, 2001).
23. 莊達人, VLSI製造技術, 第二版, (高立圖書, 台灣, 民國91年).
24. 顧子琨, 超大型積體電路之銅連接線技術, 電子月刊 5(6), 117 (1999).
25. M. A. Nicolet, Diffusion barriers in thin films, Thin Solid Films 52, 415(1978).
26. A. S. Oates, F. Nkansah, and S. Chittipeddi, Electromigration-induced drift failure of via contacts in multilevel metallization, J. Appl. Phys. 72, 2227 (1992).
27. J. S. Chun, P. Desjardins, C. Lavoie, I. Petrov, C. Cabral, and J. E. Greene, Interfacial reaction pathways and kinetics during annealing of 111-textured Al-TiN bilayers: A synchrotron x-ray diffraction and transmission electron microscopy study, J. Vac. Sci. Technol. A 19, 2207 (2001).
28. S. H. Kim, K. T. Nam, A. Datta, and K. B. Kim, Failure mechanism of a multilayer (TiN/Al/TiN) diffusion barrier between copper and silicon, J. Appl. Phys. 92, 5512 (2002).
29. W. J. Zhang, L. W. Yi, J. N. Tu, P. Y. Chang, D. L. Mao, and J. Wu, Roughness and texture correlation of Al films, J. Electron. Mater. 34, 1307 (2005).
30. B. S. Kang, S. M. Lee, J. S. Kwak, D. S. Yoon, and H. K. Baik, The effectiveness of Ta prepared by ion-assisted deposition as a diffusion barrier between copper and silicon, J. Electrochem. Soc. 144, 1807 (1997).
31. S. Lee, S. H. Yang, H. S. Moon, and J. W. Park, Dielectric constant stability and thermal stability of Cu/Ta/SiOF/Si multilayer films, Jpn. J. Appl. Phys. 40, 225 (2001).
32. S. Li, Z. L. Dong, K. M. Latt, H. S. Park, and T. White, Formation of Cu diffusion channels in Ta layer of a Cu/Ta/SiO2/Si structure, Appl. Phys. Lett. 80, 2296 (2002).
33. Z. L. Yuan, D. H. Zhang, C. Y. Li, K. Prasad, and C. M. Tan, Thermal stability of Cu/alpha-Ta/SiO2/Si structures, Thin Solid Films 462, 284 (2004).
34. C. N. Liao and K. M. Liou, Electrical properties of Cu/Ta interfaces under electrical current stressing, J. Vac. Sci. Technol. A 23, 359 (2005).
35. K. H. Min, K. C. Chun, and K. B. Kim, Comparative study of tantalum and tantalum nitrides (Ta2N and TaN) as a diffusion barrier for Cu metallization, J. Vac. Sci. Technol. B 14, 3263 (1996).
36. G. S. Chen and S. T. Chen, Diffusion barrier properties of single- and multilayered quasi-amorphous tantalum nitride thin films against copper penetration, J. Appl. Phys. 87, 8473 (2000).
37. K. M. Latt, Y. K. Lee, S. Li, T. Osopowicz, H. L. Seng, The impact of layer thickness of IMP-deposited tantalum nitride films on integrity of Cu/TaN/SiO2/Si multilayer structure, Mater. Sci. Eng. B 84, 217 (2001).
38. C. C. Chang, S. K. JangJian, and J. S. Chen, Dependence of Cu/Ta-N/Ta metallization stability on the characteristics of low dielectric constant materials, J. Electrochem. Soc. 152, G517 (2005).
39. K. M. Chang, T. H. Yeh, I. C. Deng, and C. W. Shin, Amorphouslike chemical vapor deposited tungsten diffusion barrier for copper metallization and effects of nitrogen addition, J. Appl. Phys. 82, 1469 (1997).
40. J. E. Kelsey, C. Goldberg, G. Nuesca, G. Peterson, A. E. Kaloyeros, and B. Arkles, Low temperature metal-organic chemical vapor deposition of tungsten nitride as diffusion barrier for copper metallization, J. Vac. Sci. Technol. B 17, 1101 (1999).
41. S. Lee, D. J. Kim, S. H. Yang, J. Park, S. Sohn, K. Oh, T. Y. Kim, J. Y. Kim, G. Y. Yeom, and J. W. Park, Thermal stability enhancement of Cu/WN/SiOF/Si multilayers by post-plasma treatment of fluorine-doped silicon dioxide, J. Appl. Phys. 85, 437 (1999).
42. S. Bystrova, A. A. I. Aarnink, J. Holleman, and R. A. M. Wolters, Atomic layer deposition of W1.5N barrier films for Cu metallization, J. Electrochem. Soc. 152, G522 (2005).
43. H. Yanagisawa, K. Sasaki, H. Miyake, and Y. Abe, Single-oriented growth of (111) Cu film on thin ZrN/Zr bilayered film for ULSI metallization, Jpn. J. Appl. Phys. 39, 5987 (2000).
44. M. B. Takeyama, A. Noya, K. Sakanishi, Diffusion barrier properties of ZrN films in the Cu/Si contact systems, J. Vac. Sci. Technol. B 18, 1333 (2000).
45. C. S. Chen, C. P. Liu, H. G. Yang, and C. Y. A. Tsao, Influence of the preferred orientation and thickness of zirconium nitride films on the diffusion property in copper, J. Vac. Sci. Technol. B 22, 1075 (2004).
46. K. Yoshimoto, S. Shinkai, and K. Sasaki, Application of HfN/Hf bilayered film as a diffusion barrier for Cu metallization system of Si large-scale integration, Jpn. J. Appl. Phys. 39, 1835 (2000).
47. M. H. Lin and S. Y. Chiou, Effect of phase formation behavior on thermal stability of hafnium-based thin films for copper interconnects, Jpn. J. Appl. Phys. 43, 3340 (2004).
48. K. L. Ou, S. Y. Chiou, M. H. Lin, and R. Q. Hsu, Barrier capability of HfN films with various nitrogen concentrations against copper diffusion in Cu/Hf-N/n+-p junction diodes, J. Electrochem. Soc. 152, G138 (2005).
49. S. Joseph, M. Eizenberg, C. Marcadal, and L. Chen, TiSiN films produced by chemical vapor deposition as diffusion barriers for Cu metallization, J. Vac. Sci. Technol. B 20, 1471 (2002).
50. M. Nose, Y. Deguchi, T. Mae, E. Honbo, T. Nagae, and K. Nogi, Influence of sputtering conditions on the structure and properties of Ti-Si-N thin films prepared by r.f.-reactive sputtering, Surf. Coat. Technol. 174, 261 (2003).
51. Y. C. Ee, Z. Chen, S. Xu, L. Chan, K. H. See, and S. B. Law, Electroless copper deposition as a seed layer on TiSiN barrier, J. Vac. Sci. Technol. A 22, 1852 (2004).
52. C. L. Lin, S. R. Ku, and M. C. Chen, Reactively sputtered amorphous TaSixNy films serving as barrier layer against copper diffusion, Jpn. J. Appl. Phys. 40, 4181 (2001).
53. L. W. Lai, J. S. Chen, and W. S. Hsu, Influence of Ta/Si atomic ratio on the interdiffusion between Ta-Si-N and Cu at elevated temperature, J. Appl. Phys. 94, 5396 (2003).
54. R. Hubner, M. Hecker, N. Mattern, A. Voss, J. Acker, V. Hoffmann, K. Wetzig, H. J. Engelmann, E. Zschech, H. Heuer, and C. Wenzel, Influence of nitrogen content on the crystallization behavior of thin Ta-Si-N diffusion barriers, Thin Solid Films 468, 183 (2004).
55. Q. T. Jaing, R. Faust, H. Lam, and J. Micha, Investigation of Ta, TaN and TaSiN Barriers for Copper Interconnects, IEEE IITC 125 (1999).
56. L. K. Elbaum, M. Wittmer, C. Y. Ting, and J. J. Cuomo, ZrN diffusion barrier in aluminum metallization schemes, Thin Solid Films 104 , 81 (1983).
57. W. M. Kuschke, A. Kretschmann, R. M. Keller, R. P. Vinci, C. Kaufmann, and E. Arzt, Textures of thin copper films, J. Mater. Res. 13, 2962 (1998).
58. R. L. Jackson, B. Eliot, C. Theodore, H. Alain, B. Maximillian, P. Evan, W. Tom, Processing and integration of copper interconnects, Solid State Technol. 41, 49 (1998).
59.尤志州, 劉如熹, 蔡明蒔, 胡淑芬, 王進龍, 李盈壕, 呂志鵬,利用無電極鍍銅方法成長晶種層及其特性研究, 毫微米通訊 7(4), 17 (2001).
60. T. N. Arunagiri, Y. Zheng, O. Chyan, M. El-Bouanani, M. J. Kim, K. H. Chen, C. T. Wu, L. C. Chen, 5 nm ruthenium thin film as a directly plateable copper diffusion barrier, Appl. Phys. Lett. 86, 083104 (2005).
61. J. J. Tan, X. P. Qu, Q. Xie, Y. Zhou, and G. P. Ru, The properties of Ru on Ta-based barriers, Thin Solid Films 504, 231 (2006).
62. Q. Xie, Y. L. Jiang, J. Musschoot, D. Deduytsche, C. Detavernier, R. L. V. Meirhaeghe, S. V. D. Berghe, G. P. Ru, B. Z. Li, X. P. Qu, Ru thin film grown on TaN by plasma enhanced atomic layer deposition, Thin Solid Films 517, 4689 (2009).
63. W. Sari, T. K. Eom, C. W. Jeon, H. Sohn, and S. H. Kim, Improvement of the Diffusion Barrier Performance of Ru by Incorporating a WNx Thin Film for Direct-Plateable Cu Interconnects, Electrochem. Solid-State Lett. 12, H248 (2009).
64. D. C. Perng, J. B. Yeh, K. C. Hsu, Ru/WCoCN as a seedless Cu barrier system for advanced Cu metallization, Appl. Surf. Sci. 256, 688 (2009).
65. D. C. Perng, J. B. Yeh, K. C. Hsu, Phosphorous doped Ru film for advanced Cu diffusion barriers, Appl. Surf. Sci. 254, 6059 (2008).
66. S. W. Kim, S. H. Kwon, S. J. Jeong, and S. W. Kang, Improvement of Copper Diffusion Barrier Properties of Tantalum Nitride Films by Incorporating Ruthenium Using PEALD, J. Electrochem. Soc. 155, H885 (2008).
67. S. H. Kwon, O. K. Kwon, J. S. Min, and S. W. Kang, Plasma-Enhanced Atomic Layer Deposition of Ru-TiN Thin Films for Copper Diffusion Barrier Metals, J. Electrochem. Soc. 153, G578 (2006).
68. D. Josell, J. E. Bonevich, T. P. Moffat, T. Aatonen, M. Ritala, M. Leskela, Iridium Barriers for Direct Copper Electrodeposition in Damascene Processing, Electrochem. Solid-State Lett. 9, C48 (2006).
69. L. C. Leu, D. P. Norton, L. McElwee-White, and T. J. Anderson, Ir/TaN as a bilayer diffusion barrier for advanced Cu interconnects, Appl. Phys. Lett. 92, 111917 (2008).
70. J. M. Poate, K. N. Tu, and J. W. Mayer, Thin Films-Interdiffusion and Reactions, (John Wiley & Sons, USA, 1978).
71. P. Kofstad, Nonstoichiometry, Diffusion, and Electrical Conductivity in Binary Metal Oxides, (John Wiley & Sons, USA, 1972).
72. P. S. Ho, General aspects of barrier layers for very-large-scale integration applications I: Concepts, Thin Solid Films 96, 301 (1982).
73. D. A. Porter and K. E. Easterling, Phase Transformations in Metals and Alloys, (Chapman & Hall, London, UK, 1992).
74. R. E. Reed-Hill and R. Abbaschian, Physical metallurgy principles, 3rd ed. (PWS-Kent Publication, Boston, USA, 1992).
75. D. Gupta, Editor-in-Chief, Diffusion processes in advanced technological materials, (William Andrew Publication, New York, USA, 2005).
76. P. Shewmon, Diffusion in Solids, 2nd ed. (Minerals, Metals & Materials Society, Pennsylvania, 1989).
77. J. D. Plummer, M. D. Deal, and P. B. Griffin, Silicon VLSI Technology, (Prentice Hall, New Jersey, USA, 2000).
78. D. Gupta and P. S. Ho, Editor-in-Chief, Diffusion Phenomena in Thin Films and Microelectronic Materials, (Noyes Publication, New Jersey, USA, 1988).
79. H. Mehrer, Diffusion in solids : fundamentals, methods, materials, diffusion-controlled processes, (Springer, Berlin, Germany, 2007).
80. T. Oku, E. Kawakami, M. Uekubo, K. Takahiro, S. Yamaguchi, and M. Murakami, Diffusion barrier property of TaN between Si and Cu, Appl. Surf. Sci. 99, 265 (1996).
81. M. Moriyama, T. Kawazoe, M. Tanaka, and M. Murakami, Correlation between microstructure and barrier properties of TiN thin films used Cu interconnects, Thin Solid Films 416, 136 (2002).
82. J. Imahori, T. Oku, and M. Murakami, Diffusion barrier properties of TaC between Si and Cu, Thin Solid Films 301, 142 (1997).
83. M. Uekubo, T. Oku, K. Nii, M. Murakami, K. Takahiro, S. Yamaguchi, T. Nakano, and T. Ohta, WNx diffusion barriers between Si and Cu, Thin Solid Films 286, 170 (1996).
84. Y. L. Kuo, H. H. Lee, C. P. Lee, J. C. Lin, S. L. Shue, M. S. Liang, and B. J. Daniels, Diffusion of Copper in Titanium Zirconium Nitride Thin Films, Electrochem. Solid-State Lett. 7, C35 (2004).
85. H. Wang, Ashutosh Tiwari, X. Zhang, A. Kvit, and J. Narayan, Copper diffusion characteristics in single-crystal and polycrystalline TaN, Appl. Phys. Lett. 81, 1453 (2002).
86. K. Y. Lim, Y. S. Lee, Y. D. Chung, I. W. Lyo, C. N.Whang, J. Y. Won, and H. J. Kang, Grain boundary diffusion of Cu in TiN filmby X-ray photoelectron spectroscopy, Appl. Phys. A 70, 431 (2000).
87. K. C. Tsai, W. F. Wu, J. C. Chen, T. J. Pan, and C. G. Chao, Numerical and Experimental Analysis of Cu Diffusion in Plasma-Treated Tungsten Barrier, J. Electrochem. Soc. 152, G83 (2005).
88. J. Pelleg and G. Sade, Diffusion barrier properties of amorphous TiB2 for application in Cu metallization, J. Appl. Phys. 91, 6099 (2002).
89. Y. S. Kim, H. Il Kim, M. A. Dar, H. K. Seo, G. S. Kim, S. G. Ansari, J. J. Senkevich, and H. S. Shin, Electrochemically Deposited Ruthenium Seed Layer Followed by Copper Electrochemical Plating, Electrochem. Solid-State Lett. 9, C19 (2006).
90. 維平,黃河樹,蘇勇誌,顏銘瑤, 電鍍銅添加劑在IC及IC構裝基板上的應用, 化工 50, 14 (2003).
91. 方景禮, 電鍍添加劑總論(14),表面技術雜誌153, 137 (1983).
92. D. K. Schroder, Semiconductor Material and Device Characterization, 2nd ed., (John Wiley & Sons, Arizona, USA, 1998).
93. W. K. Chu, J. W. Mayer, and M. A. Nicolet, Backscattering Spectrometry, (Academic, New York, 1978).
94. B. D. Cullity and S. R. Stock, Elements of X-ray Diffraction, 3rd ed., (Prentice Hall, New Jersey, USA, 2001).
95. H. Bubert and H. Jenett, Editor-in-Chief, Surface and Thin Film Analysis, (Wiley-VCH, Germany, 2002).
96. 許樹恩, 吳泰伯, X光繞射原理與材料結構分析, (中國材料科學學會, 台灣, 民國85年).
97. D. Briggs and M. P. Seah, Practical Surface Analysis, 2nd ed, Volume 1- Auger and X-ray Photoelectron Spectroscopy, (John Wiley & Sons, Chichester, England, 1990).
98. J. C. Vickerman, Editor-in-Chief, Surface Analysis : The Principal Techniques, (John Wiley & Sons, Chichester, England, 1997).
99. 汪建民(編), 材料分析, (中國材料科學學會, 台灣, 民國87年).
100. R. E. Lee, Scanning Electron Microscopy and X-ray Microanalysis, (PTR Prentice-Hall, New Jersey, USA 1993).
101. 黃宏勝, 鄭信民, 林麗娟, 場發射掃描式電子顯微鏡與附加功能配件之原理及應用, 化工資訊與商情月刊 8, 38 (2004).
102. D. B. Williams and C. B. Carter, Transmission Electron Microscopy: A Textbook for Materials Science, (Plenum, New York, USA, 1996).
103. D. Brandon and W. D. Kaplan, Microstructural Characterization of Materials, (John Wiley & Sons, Chichester, England, 1999).
104. 陳力俊, 材料電子顯微鏡學, (國家實驗研究院儀器科技研究中心, 台灣, 民國83年).
105. M. Ohring, Materials Science of Thin Films, 2nd ed, (Academic Press, San Diego, USA, 2002).
106. M. Thompson and L. Doolittle, RUMP-RBS Analysis and Simulation Package [v 4.00 (beta)], Computer Graphic Service, Ltd. (Feb. 7, 2008)
107. T. Y. Lin, H. Y. Cheng, T. S. Chin, C. F. Chiu, and J. S. Fang, 5-nm-thick TaSiC amorphous films stable up to 750 oC as a diffusion barrier for copper metallization, Appl. Phys. Lett. 91, 152908 (2007).
108. S. Rawal, D. P. Norton, H. Ajmera, T. J. Anderson, and L. McElwee-White, Properties of Ta-Ge-(O)N as a diffusion barrier for Cu on Si, Appl. Phys. Lett. 90, 051913 (2007).
109. M. Konuma, Film Deposition by Plasma Techniques, (Springer-Verlag, Berlin, Germany, 1992).
110. H. T. G. Hentzell, C. R. M. Grovenor, and D. A. Smith, Grain structure variation with temperature for evaporated metal films, J. Vac. Sci. Technol. A 2, 218 (1984).
111. J. A. Thornton, Influence of apparatus geometry and deposition conditions on the structure and topography of thick sputtered coatings, J. Vac. Sci. Technol. 11, 666 (1974).
112. P. B. Barna and M. Adamik, Fundamental structure forming phenomena of polycrystalline films and the structure zone models, Thin Solid Films 317, 27 (1998).
113. M. Damayanti, T. Sritharan, S.G. Mhaisalkar, E. Phoon, and L. Chan, Study of Ru barrier failure in the Cu/Ru/Si system, J. Mater. Res. 22, 2505 (2007).
114. M. Damayanti, T. Sritharan, Z. H. Gan, S. G. Mhaisalkar, N. Jiang, and L. Chan, Ruthenium Barrier/Seed Layer for Cu/Low-k Metallization, J. Electrochem. Soc. 153, J41 (2006).
115. 凌永健, 二次離子質譜儀, 科儀新知 11, 36 (1989).
116. C. M. Liu, W. L. Liu, W. J. Chen, S. H. Hsieh, T. K. Tsai, and L. C. Yang, ITO as a Diffusion Barrier Between Si and Cu, J. Electrochem. Soc. 152, G234 (2005).
117. H. O. Pierson, Handbook of Refractory Carbides and Nitrides, (Noyes Publication, New Jersey, USA, 1996).
118. A. Arranz and C. Palacio, Composition of tantalum nitride thin films grown by low-energy nitrogen implantation: a factor analysis study of the Ta 4f XPS core level, Appl. Phys. A 81, 1405 (2005).
119. Y. Kuo, Reactive Ion Etching of Sputter Deposited Tantalum Oxide and Its Etch Selectivity to Tantalum, J. Electrochem. Soc. 139, 579 (1992).
120. C. C. Chang, J. S. Jeng, and J. S. Chen, Microstructural and electrical characteristics of reactively sputtered Ta-N thin films, Thin Solid Films 413, 46 (2002).
121. P. Alén, M. Vehkamäki, M. Ritala, and M. Leskelä, Diffusion Barrier Properties of Atomic Layer Deposited Ultrathin Ta2O5 and TiO2 Films, J. Electrochem. Soc. 153, G304 (2006).
122. P. Majumder and C. G. Takoudis, Investigation on the diffusion barrier properties of sputtered Mo/W–N thin films in Cu interconnects, Appl. Phys. Lett. 91, 162108 (2007).
123. J. S. Chen and J. L. Wang, Diffusion Barrier Properties of Sputtered TiB2 Between Cu and Si, J. Electrochem. Soc. 147, 1940 (2000).
124. K. N. Tu, Recent advances on electromigration in very-large-scale-integration of interconnects, J. Appl. Phys. 94, 5451 (2003).
125. C. K. Hu, R. Rosenberg, and K. Y. Lee, Electromigration path in Cu thin-film lines, Appl. Phys. Lett. 74, 2945 (1999).
126. C. Ryu, A. L. S. Loke, T, Nogami and S. S. Wong, Effect of texture on the Electromigration of CVD Copper, IEEE Inter. Reliab. Phys. Symp. 1-3, 201 (1997).
127. F. W. Young, J. V. Cathcart and A. T. Gwathmey, The rate of oxidation of several faces of a single crystal of copper as determined with elliptically polarized light. Acta Metal. 4, 145 (1956).
128. C. A. Chang, Formation of copper silicides from Cu(100)/Si(100) and Cu(111)/Si(111) structures. J. Appl., Phys. 67, 566 (1990).
129. H. Kim, T. Koseki, T. Ohba, T. Ohta, Y. Kojima, H. Sato, and Y. Shimogaki, Cu Wettability and Diffusion Barrier Property of Ru Thin Film for Cu Metallization, J. Electrochem. Soc. 152, G594 (2005).
130. J. J. Rha and J. K. Park, Agglomeration of TiSi2 thin film on (100) Si substrates, J. Appl. Phys. 82, 2933 (1997).
131. S. Rawal, E. Lambers, D. P. Norton, T. J. Anderson, and L. McElwee-White, Comparative study of HfNx and Hf-Ge-N copper diffusion barriers on Ge, J. Appl. Phys. 100, 063532 (2006).
132. J. S. Fang, C. F. Chiu, J. H. Lin, T. Y. Lin, and T. S. Chin, Failure Mechanism of 5 nm Thick Ta-Si-C Barrier Layers Against Cu Penetration at 750-800 oC, J. Electrochem. Soc. 156, H147 (2009).
133. N. Benouattas, A. Mosser, D. Raiser, J. Faerber, and A. Bouabellou, Behaviour of copper atoms in annealed Cu/SiOx/Si systems, Appl. Surf. Sci. 153, 79 (2000).
134. R. R. Chromik, W. K. Neils, and E. J. Cotts, Thermodynamic and kinetic study of solid state reactions in the Cu-Si system, J. Appl. Phys. 86, 4273 (1999).
135. T. Y. Lin, H. Y. Cheng, T. S. Chin, C. F. Chiu, and J. S. Fang, Highly Thermal-Stable Amorphous TaSi2Cx Films as Diffusion Barrier, J. Electrochem. Soc. 155, G29 (2008).
136. M. A. Nicolet, Ternary amorphous metallic thin films as diffusion barriers for Cu metallization, Appl. Surf. Sci. 91, 269 (1995).