| 研究生: |
李峻禕 Li, Jyun-Yi |
|---|---|
| 論文名稱: |
量子糾纏態潛在的傳態能力 Hidden Teleportation Power For Entangled Quantum State |
| 指導教授: |
梁永成
Liang, Yeong-Cherng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 物理學系 Department of Physics |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 英文 |
| 論文頁數: | 34 |
| 中文關鍵詞: | 量子傳態 、局域性篩選器 、保真度 、單態比 |
| 外文關鍵詞: | teleportation, local filtering, fidelity, singlet fraction |
| 相關次數: | 點閱:90 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
透過共享一對最大糾纏態,理想的量子傳態可以將一未知的d維量子態從一處完整的遙傳至另一處,若Alice和Bob只共享了古典資源,則傳態的保真度,即,Alice欲傳的態和Bob拿到的態兩者的最大平均保真度為fc=2/(d+1),這個值對應到了單態比Fc=1/d。如果Alice和Bob共享了一對傳態保真度f<fc(F<Fc)的糾纏態ρ,但在局域性篩選器成功的作用之後,傳態保真度f>fc(F>Fc),則我們說量子糾纏態ρ具有潛在的傳態能力。在這份研究工作內,我們探究:(1)有一個參數、兩個d維量子位元族的量子糾纏態以及Werner state的潛在傳態能力,(2)局域性篩選器成功的機率以及有多少傳態保真度可以藉由局域性篩選器來增加,兩者之間的關係,(3)將我們得到的結果和Rains的半定程式做比較,其考慮所有跡數保持的正局部轉置操作來最大化傳態保真度,(4)直接最大化單態比和最大化整體傳態保真度之間的差異,(5)給予一個如何用Mach-Zehnder干涉儀來測量兩個未知量子態的光子的例子。
An ideal quantum teleportation transfers an unknown d-dimensional quantum state intact from one party to another via the use of a maximally entangled state. If Alice and Bob only share a classical resource, the teleportation fidelity, i.e., the maximal average fidelity between the state to be teleported and the state received is at most fc=2/(d+1), which corresponds to singlet fraction Fc=1/d. If they share an entangled state ρ with teleportation fidelity f<fc (so equivalent to F<Fc) and upon successful local filtering, the teleportation fidelity becomes larger than fc (or F>Fc), we say that ρ has hidden teleportation power. Here, we investigate (1) the hidden teleportation power of a one-parameter family of entangled states and Werner state, (2) the trade-off between the success probability of local filtering and the extent to which the teleportation fidelity can be increased by this means,(3) the upper bound obtained by Rains’s semidefinite program [13], (4) difference between maximizing the singlet fraction after local filtering and maximizing cost function, (5) we also give an example of Mach-Zehnder interferometer to show how to measure the fidelity [5] of two photons in unknown states.
[1] Piotr Badziag, Michał Horodecki, Paweł Horodecki, and Ryszard Horodecki. Local environment can enhance fidelity of quantum teleportation. Phys. Rev. A, 62:012311, Jun 2000.
[2] Charles H. Bennett, Gilles Brassard, Claude Crépeau, Richard Jozsa, Asher Peres, and William K. Wootters. Teleporting an unknown quantum state via dual classical and einstein-podolsky-rosen channels. Phys. Rev. Lett., 70:1895–1899, Mar 1993.
[3] Man-Duen Choi. Completely positive linear maps on complex matrices. Linear Algebra and its Applications, 10(3):285 – 290, 1975.
[4] Andrew C. Doherty, Pablo A. Parrilo, and Federico M. Spedalieri. Complete family of separability criteria. Phys. Rev. A, 69:022308, Feb 2004.
[5] Artur K. Ekert, Carolina Moura Alves, Daniel K. L. Oi, Michał Horodecki, Paweł Horodecki, and L. C. Kwek. Direct estimations of linear and nonlinear functionals of a quantum state. Phys. Rev. Lett., 88:217901, May 2002.
[6] N. Gisin. Hidden quantum nonlocality revealed by local filters. Physics Letters A, 210(3):151 – 156, 1996.
[7] Michał Horodecki, Paweł Horodecki, and Ryszard Horodecki. Inseparable two spin-1/2 density matrices can be distilled to a singlet form. Phys. Rev. Lett., 78:574–577, Jan 1997.
[8] Michał Horodecki, Paweł Horodecki, and Ryszard Horodecki. General teleportation channel, singlet fraction, and quasidistillation. Phys. Rev. A, 60:1888–1898, Sep 1999.
[9] Ryszard Horodecki, Michał Horodecki, and Paweł Horodecki. Teleportation, bell’s inequalities and inseparability. Physics Letters A, 222(1):21 – 25, 1996.
[10] G. J. Milburn. Quantum optical fredkin gate. Phys. Rev. Lett., 62:2124–2127, May 1989.
[11] Sandu Popescu. Bell’s inequalities versus teleportation: What is nonlocality? Phys. Rev. Lett., 72:797–799, Feb 1994.
[12] Sandu Popescu. Bell’s inequalities and density matrices: Revealing “hidden” nonlocality. Phys. Rev. Lett., 74:2619–2622, Apr 1995.
[13] E. M. Rains. A semidefinite program for distillable entanglement. IEEE Transactions on Information Theory, 47(7):2921–2933, Nov 2001.
[14] G. N. M. Tabia. private communication, 2019.
[15] Frank Verstraete and Henri Verschelde. Optimal teleportation with a mixed state of two qubits. Phys. Rev. Lett., 90:097901, Mar 2003.