簡易檢索 / 詳目顯示

研究生: 戴偉城
Tai, Wei-Cheng
論文名稱: 蘭嶼豬之糖尿病誘導對於缺血下肢之影響研究
Effect of diabetic induction on hindlimb ischemia of Lanyu pigs
指導教授: 黃玲惠
Huang, Ling-Huei
學位類別: 碩士
Master
系所名稱: 生物科學與科技學院 - 生物科技與產業科學系
Department of Biotechnology and Bioindustry Sciences
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 116
中文關鍵詞: 下肢缺血蘭嶼豬糖尿病老化
外文關鍵詞: Hind limb ishcmiea, Lanyu pig, diabetes, aging
相關次數: 點閱:38下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 周邊動脈疾病(PAD,Peripheral arterial disease)是由於血管堵塞造成血流降低,以至於無法提供身體周邊組織足夠的血液灌流及代謝廢物,導致缺血區域喪失功能。目前尚未有穩定且持續的肢體缺血的大型動物模型適合測試外周動脈疾病(PAD)的新型血管新生療法。本研究通過不同的先決誘導條件測試不同蘭嶼豬下肢缺血誘導方式。在糖尿病誘導部分,本研究改良了過去前人誘導方式,再注射藥物過後施打葡萄糖溶液,發現能有效降低誘導死亡率及提升其成功率與維持時間,後續亦加入了老化的誘導與糖尿病同時進行,並將其應用於下肢缺血豬隻的誘導中,通過量化誘導後的下肢收縮壓、行為模式評估、血流回復及肌肉組織學,建立了適合用於評估治療的大型動物模型。結果顯示糖尿病豬隻結紮單側下肢的主要血管(IIA、IIV、EIA、EIV)及老化糖尿病豬隻結紮雙側EIA的方式,會在誘導後產生長時間的步態功能障礙、缺血症狀及肉眼可見的肌肉組織病變,本研究提供了PAD臨床前治療的大動物實驗平台,在後續血管新生治療方法上增加了從實驗室到臨床的轉化成功率。

    Peripheral arterial disease (PAD) is caused by the reduction of blood flow due to vascular blockage, a symptom that makes it difficult to provide sufficient blood perfusion and metabolic wastes to the surrounding tissues of the body. Therefore, the ischemic area loses its function. Since there are currently no large animal models of stable and persistent limb ischemia which are suitable for testing novel angiogenic therapies for peripheral arterial disease (PAD), we used Lanyu pigs at different conditions to test various methods of inducing hind limb ischemia. This study improved the previous induction method of diabetes. The mortality is effectively reduced if the glucose solution is administered after injecting alloxan. Moreover, the success rate of diabetic induction is improved and the maintenance of hyperglycemia can be longer. In addition, D-galactose was used to induced aging of Lanyu pigs. To establish hind limb ischemia model, embolization and ligation were examined on external iliac artery (EIA), internal iliac artery (IIA), external iliac vein (EIV), internal iliac vein (IIV). Assessments of hind limb systolic blood pressure, behavioral patterns, blood flow recovery, and muscle histology were used to evaluate ischemic condition of hind limb in Lanyu pigs. Our results showed that ligating the unilateral IIA, IIV and the EIA, EIV in diabetes-induced pigs, or ligating of bilateral EIAs in diabetes-plus-aging-induced pigs will both bring prolonged gait dysfunction, ischemic symptoms, and obviously atrophy in gastrocnemius muscle and soleus muscle. Our study not only provides a large animal experimental platform for the preclinical treatment of PAD, but also increases the translational success rate from the laboratory to the clinic in subsequent angiogenesis treatments.

    中文摘要I 英文摘要II 誌謝VI 目錄VII 表目錄X 圖目錄XI 附表目錄XIII 附圖目錄XIV 縮寫表XV 一、研究背景1 1-1 周邊動脈阻塞疾病1 1-2 糖尿病於下肢缺血之影響2 1-3 老化影響血管新生及側枝血管分化能力3 1-4 下肢缺血疾病診斷治療4 1-5 治療性血管新生對於下肢缺血之影響6 1-6 下肢缺血動物模式8 1-7 下肢缺血動物模式之缺血後評估10 1-8研究目的12 二、材料與方法14 2-1 實驗動物14 2-2 實驗藥品15 2-3 實驗器材與儀器15 2-4 豬隻保定與麻醉16 2-5 糖尿病蘭嶼豬誘導與血糖測試17 2-6 蘭嶼豬葡萄糖耐受性測試17 2-7 蘭嶼豬老化誘導及血清製備18 2-8 蘭嶼豬血清內超氧化物歧化酶(Superoxide Dismutase)檢驗19 2-9 蘭嶼豬下肢缺血手術19 2-10 都卜勒超音波20 2-11 前後肢體血壓比21 2-12 實驗動物犧牲與後續處理21 2-13 腓腸肌與比目魚肌組織染色切片22 2-14 實驗數據統計與繪圖 24 三. 結果25 3-1 蘭嶼豬隻糖尿病模式25 3-2糖尿病蘭嶼豬葡萄糖耐受性及血液生化數值26 3-3蘭嶼豬隻糖尿病與老化模式27 3-4蘭嶼豬下肢進行手術栓塞血管誘導之缺血模式28 3-5健康蘭嶼豬下肢結紮手術並移除血管誘導之缺血模式29 3-6糖尿病蘭嶼豬下肢結紮手術並移除血管誘導之缺血模式33 3-7同時誘導糖尿病與老化之蘭嶼豬雙側下肢血管結紮缺血模式38 四、討論41 4-1 蘭嶼豬隻糖尿病模式41 4-2 蘭嶼豬同時誘導衰老及糖尿病動物模式43 4-3 蘭嶼豬下肢缺血動物模式44 參考文獻49 圖表63 附錄114

    李易,DIB 於糖尿病下肢缺血小鼠治療之研究,國立成功大學生物科技研究所碩士論文,2016。

    邱玟逸, 林柔君, 羅貽豪,下肢周邊動脈疾病,台灣老年醫學暨老年學雜誌,8,227-238,2013。

    梁致文,蘭嶼豬糖尿病模式建立與傷口癒合研究,國立成功大學生物科技研究所碩士論文 ,2017。

    許啟運,誘發生長豬隻第2型糖尿病:不同 TCF4 基因型之敏感性比較,國立宜蘭大學生物資源學院碩士論文,2015

    詹秉鈞,蘭嶼豬下肢缺血動物模式之研究,國立成功大學生物科技與產業科學系研究所碩士論文,2019

    鄭紫妃,改良之DIB膠於小鼠下肢缺血之治療,國立成功大學生物科技研究所碩士論文,2016。

    簡崇美,糖尿病下肢缺血小鼠之治療,國立成功大學生物科技研究所碩士論文,2014。

    Adler, A.I., Boyko, E.J., Ahroni, J.H., and Smith, D.G. Lower-extremity amputation in diabetes. The independent effects of peripheral vascular disease, sensory neuropathy, and foot ulcers. Diabetes Care 22, 1029-1035, 1999.

    Andrews, K.L., Houdek, M.T., and Kiemele, L.J. Wound management of chronic diabetic foot ulcers: from the basics to regenerative medicine. Prosthetics and Orthotics International 39, 29-39, 2015.

    Annex, B.H. Therapeutic angiogenesis for critical limb ischaemia. Nature Reviews Cardiology 10, 387, 2013.

    Aref, Z., de Vries, M.R., and Quax, P.H. Variations in Surgical Procedures for Inducing Hind Limb Ischemia in Mice and the Impact of These Variations on Neovascularization Assessment. International Journal of Molecular Sciences 20, 3704, 2019.

    Association, A.D. Diagnosis and classification of diabetes mellitus. Diabetes Care 36, S67-S74, 2013.

    Attanasio, S., and Snell, J. Therapeutic angiogenesis in the management of critical limb ischemia: current concepts and review. Cardiology in Review 17, 115-120, 2009.

    Auerbach, R., Lewis, R., Shinners, B., Kubai, L., and Akhtar, N. Angiogenesis assays: a critical overview. Clinical Chemistry 49, 32-40, 2003.

    Bauters, C., Asahara, T., Zheng, L.P., Takeshita, S., Bunting, S., Ferrara, N., Symes, J.F., and Isner, J.M. Recovery of disturbed endothelium-dependent flow in the collateral-perfused rabbit ischemic hindlimb after administration of vascular endothelial growth factor. Circulation 91, 2802-2809, 1995.

    Bedarida, G.V., Hoffmann, U., and Tatò, F. Acute lower limb ischemia due to thrombo-embolic arterial occlusions in two previously healthy men with markedly elevated Lp (a). Vascular Medicine 11, 259-262, 2006.

    Bonauer, A., Carmona, G., Iwasaki, M., Mione, M., Koyanagi, M., Fischer, A., Burchfield, J., Fox, H., Doebele, C., and Ohtani, K. MicroRNA-92a controls angiogenesis and functional recovery of ischemic tissues in mice. Science 324, 1710-1713, 2009.

    Brem, H., and Tomic-Canic, M. Cellular and molecular basis of wound healing in diabetes. Journal of Clinical Investigation 117, 1219-1222, 2007.

    Brownlee, M. Biochemistry and molecular cell biology of diabetic complications. Nature 414, 813, 2001.

    Bucala, R., Makita, Z., Vega, G., Grundy, S., Koschinsky, T., Cerami, A., and Vlassara, H. Modification of low density lipoprotein by advanced glycation end products contributes to the dyslipidemia of diabetes and renal insufficiency. Proceedings of the National Academy of Sciences of the United States of America 91, 9441-9445, 1994.

    Caputo, G.M., Cavanagh, P.R., Ulbrecht, J.S., Gibbons, G.W., and Karchmer, A.W. Assessment and management of foot disease in patients with diabetes. New England Journal of Medicine 331, 854-860, 1994.

    Chalothorn, D., Clayton, J.A., Zhang, H., Pomp, D., and Faber, J.E. Collateral density, remodeling, and VEGF-A expression differ widely between mouse strains. Physiological Genomics 30, 179-191, 2007.

    Clarkson, P., Celermajer, D.S., Donald, A.E., Sampson, M., Sorensen, K.E., Adams, M., Yue, D.K., Betteridge, D.J., and Deanfield, J.E. Impaired vascular reactivity in insulin-dependent diabetes mellitus is related to disease duration and low density lipoprotein cholesterol levels. Journal of the American College of Cardiology 28, 573-579, 1996.

    Collinson, D., and Donnelly, R. Therapeutic angiogenesis in peripheral arterial disease: can biotechnology produce an effective collateral circulation? European Journal of Vascular and Endovascular Surgery 28, 9-23, 2004.

    Deppen, J.N., Ginn, S.C., Kim, N.H., Wang, L., Voll, R.J., Liang, S.H., Goodman, M.M., Oshinski, J.N., and Levit, R.D. A swine hind limb ischemia model useful for testing peripheral artery disease therapeutics. Journal of Cardiovascular Translational Research 14, 1186-1197, 2021.

    Del Giudice, C., Ifergan, G., Goudot, G., Bellamy, V., Messas, E., Clement, O., Bruneval, P., Menasche, P., and Sapoval, M. Evaluation of a new model of hind limb ischemia in rabbits. Journal of Vascular Surgery 68, 849-857, 2018.

    Dolan, N.C., Liu, K., Criqui, M.H., Greenland, P., Guralnik, J.M., Chan, C., Schneider, J.R., Mandapat, A.L., Martin, G., and McDermott, M.M. Peripheral artery disease, diabetes, and reduced lower extremity functioning. Diabetes Care 25, 113-120, 2002.

    Duan, J., Murohara, T., Ikeda, H., Sasaki, K.i., Shintani, S., Akita, T., Shimada, T., and Imaizumi, T. Hyperhomocysteinemia impairs angiogenesis in response to hindlimb ischemia. Arteriosclerosis, Thrombosis, and Vascular Biology 20, 2579-2585, 2000.

    Duvall, C.L., Taylor, W.R., Weiss, D., and Guldberg, R.E. Quantitative microcomputed tomography analysis of collateral vessel development after ischemic injury. American Journal of Physiology-Heart and Circulatory Physiology 287, H302-H310, 2004.

    Ewing, D., and Clarke, B. Diagnosis and management of diabetic autonomic neuropathy. British Medical Journal 285, 916, 1982.

    Faglia, E., Clerici, G., Clerissi, J., Mantero, M., Caminiti, M., Quarantiello, A., Curci, V., Lupattelli, T., and Morabito, A. When is a technically successful peripheral angioplasty effective in preventing above‐the‐ankle amputation in diabetic patients with critical limb ischaemia? Diabetic Medicine 24, 823-829, 2007.

    Fowkes, F., Housley, E., Cawood, E., Macintyre, C., Ruckley, C., and Prescott, R. Edinburgh Artery Study: prevalence of asymptomatic and symptomatic peripheral arterial disease in the general population. International Journal of Epidemiology 20, 384-392, 1991.

    Gallagher, K.A., Liu, Z.J., Xiao, M., Chen, H., Goldstein, L.J., Buerk, D.G., Nedeau, A., Thom, S.R., and Velazquez, O.C. Diabetic impairments in NO-mediated endothelial progenitor cell mobilization and homing are reversed by hyperoxia and SDF-1α. Journal of Clinical Investigation 117, 1249-1259, 2007.

    Gao, Y., Aravind, S., Patel, N.S., Fuglestad, M.A., Ungar, J.S., Mietus, C.J., Li, S., Casale, G.P., Pipinos, II, and Carlson, M.A. Collateral Development and Arteriogenesis in Hindlimbs of Swine After Ligation of Arterial Inflow. Journal of Surgical Research 249, 168-179, 2020.

    Gerrity, R.G., Natarajan, R., Nadler, J.L., and Kimsey, T. Diabetes-induced accelerated atherosclerosis in swine. Diabetes 50, 1654-1665, 2001.

    Goode, T.L., and Klein, H.J. Miniaturization: an overview of biotechnologies for monitoring the physiology and pathophysiology of rodent animal models. Institute for Laboratory Animal Research 43, 136-146, 2002.

    Han, H., Liu, Z., Yin, J., Gao, J., He, L., Wang, C., Hou, R., He, X., Wang, G., Li, T., and Yin, Y. D-Galactose Induces Chronic Oxidative Stress and Alters Gut Microbiota in Weaned Piglets. Frontiers in Physiology 12, 634283, 2021.

    Hazarika, S., Dokun, A.O., Li, Y., Popel, A.S., Kontos, C.D., and Annex, B.H. Impaired angiogenesis after hindlimb ischemia in type 2 diabetes mellitus: differential regulation of vascular endothelial growth factor receptor 1 and soluble vascular endothelial growth factor receptor 1. Circulation Research 101, 948-956, 2007.

    Hiatt, W.R., Hirsch, A.T., Regensteiner, J.G., and Brass, E.P. Clinical trials for claudication: assessment of exercise performance, functional status, and clinical end points. Circulation 92, 614-621, 1995.

    Hirsch, A.T., Criqui, M.H., Treat-Jacobson, D., Regensteiner, J.G., Creager, M.A., Olin, J.W., Krook, S.H., Hunninghake, D.B., Comerota, A.J., Walsh, M.E., McDermott, M.M., and Hiatt, W.R. Peripheral arterial disease detection, awareness, and treatment in primary care. Jama 286, 1317-1324, 2001.

    Ho, S.C., Liu, J.H., and Wu, R.Y. Establishment of the mimetic aging effect in mice caused by D-galactose. Biogerontology 4, 15-18, 2003.

    Iglarz, M., Silvestre, J.S., Duriez, M., Henrion, D., and Lévy, B.I. Chronic blockade of endothelin receptors improves ischemia-induced angiogenesis in rat hindlimbs through activation of vascular endothelial growth factor-NO pathway. Arteriosclerosis, Thrombosis, and Vascular Biology 21, 1598-1603, 2001.

    Iwase, T., Nagaya, N., Fujii, T., Itoh, T., Murakami, S., Matsumoto, T., Kangawa, K., and Kitamura, S. Comparison of angiogenic potency between mesenchymal stem cells and mononuclear cells in a rat model of hindlimb ischemia. Cardiovascular Research 66, 543-551, 2005.

    Jennette, J.C., and Falk, R.J. Small-vessel vasculitis. New England Journal of Medicine 337, 1512-1523, 1997.

    Ji, M., Su, X., Liu, J., Zhao, Y., Li, Z., Xu, X., Li, H., and Nashun, B. Comparison of naturally aging and D-galactose induced aging model in beagle dogs. Experimental and Therapeutic Medicine 14, 5881-5888, 2017.

    Kawamura, A., Horie, T., Tsuda, I., Ikeda, A., Egawa, H., Imamura, E., Iida, J., Sakata, H., Tamaki, T., and Kukita, K. Prevention of limb amputation in patients with limbs ulcers by autologous peripheral blood mononuclear cell implantation. Therapeutic Apheresis and Dialysis 9, 59-63, 2005.

    Kim, T.I., Mena, C., and Sumpio, B.E. The Role of Lower Extremity Amputation in Chronic Limb-Threatening Ischemia. International Journal of Angiology 29, 149-155, 2020.

    Kinlay, S. Outcomes for clinical studies assessing drug and revascularization therapies for claudication and critical limb ischemia in peripheral artery disease. Circulation 127, 1241-1250, 2013.

    Kochi, T., Imai, Y., Takeda, A., Watanabe, Y., Mori, S., Tachi, M., and Kodama, T. Characterization of the arterial anatomy of the murine hindlimb: functional role in the design and understanding of ischemia models. PloS One 8, e84047, 2013.

    Kolodgie, F.D., Pacheco, E., Yahagi, K., Mori, H., Ladich, E., and Virmani, R. Comparison of particulate embolization after femoral artery treatment with IN. PACT Admiral versus Lutonix 035 paclitaxel-coated balloons in healthy swine. Journal of Vascular and Interventional Radiology 27, 1676-1685, 2016.

    Krishna, S.M., Omer, S.M., and Golledge, J. Evaluation of the clinical relevance and limitations of current pre-clinical models of peripheral artery disease. Clinical Science 130, 127-150, 2016.

    Kruse, R.R., Doomernik, D.E., Maltha, K.V., Kooloos, J.G., Kozicz, T.L., and Reijnen, M.M. Collateral artery pathways of the femoral and popliteal artery. Journal of Surgical Research 211, 45-52, 2017.

    Labs, K.H., Dormandy, J.A., Jaeger, K.A., Stuerzebecher, C.S., and Hiatt, W.R. Transatlantic conference on clinical trial guidelines in peripheral arterial disease: clinical trial methodology. Circulation 100, e75-e81, 1999.

    Lacci, K.M., and Dardik, A. Platelet-rich plasma: support for its use in wound healing. The Yale Journal of Biology and Medicine 83, 1, 2010.

    Laing, S.T., Moody, M., Smulevitz, B., Kim, H., Kee, P., Huang, S., Holland, C.K., and McPherson, D.D. Ultrasound-enhanced thrombolytic effect of tissue plasminogen activator-loaded echogenic liposomes in an in vivo rabbit aorta thrombus model-brief report. Arteriosclerosis, Thrombosis, and Vascular Biology 31, 1357-1359, 2011.

    Li, H., Yan, Z., Zhu, J., Yang, J., and He, J. Neuroprotective effects of resveratrol on ischemic injury mediated by improving brain energy metabolism and alleviating oxidative stress in rats. Neuropharmacology 60, 252-258, 2011.

    Lian, L., Tang, F., Yang, J., Liu, C., and Li, Y. Therapeutic angiogenesis of PLGA-heparin nanoparticle in mouse ischemic limb. Journal of Nanomaterials 2012, 13, 2012.

    Liistro, F., Angioli, P., Grotti, S., Brandini, R., Porto, I., Ricci, L., Tacconi, D., Ducci, K., Falsini, G., and Bellandi, G. Impact of critical limb ischemia on long-term cardiac mortality in diabetic patients undergoing percutaneous coronary revascularization. Diabetes Care 36, 1495-1500, 2013.

    Limbourg, A., Korff, T., Napp, L.C., Schaper, W., Drexler, H., and Limbourg, F.P. Evaluation of postnatal arteriogenesis and angiogenesis in a mouse model of hind-limb ischemia. Nature Protocols 4, 1737-1748, 2009.

    Loffroy, R., Guiu, B., Cercueil, J.P., and Krausé, D. Endovascular therapeutic embolisation: an overview of occluding agents and their effects on embolised tissues. Current Vascular Pharmacology 7, 250-263, 2009.

    Lotfi, S., Patel, A.S., Mattock, K., Egginton, S., Smith, A., and Modarai, B. Towards a more relevant hind limb model of muscle ischaemia. Atherosclerosis 227, 1-8, 2013.

    Madeddu, P., Emanueli, C., Spillmann, F., Meloni, M., Bouby, N., Richer, C., Alhenc-Gelas, F., Van Weel, V., Eefting, D., and Quax, P. Murine models of myocardial and limb ischemia: diagnostic end-points and relevance to clinical problems. Vascular Pharmacology 45, 281-301, 2006.

    Manninen, H.I., and Mäkinen, K. Gene therapy techniques for peripheral arterial disease. Cardiovascular and Interventional Radiology 25, 98-108, 2002.

    Marklund, S., and Marklund, G. Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. European Journal of Biochemistry 47, 469-474, 1974.

    Martin, A., Komada, M.R., and Sane, D.C. Abnormal angiogenesis in diabetes mellitus. Medicinal Research Reviews 23, 117-145, 2003.

    Mcpherson, J.R., Juergens, J.L., and Gifford, R.W. Thromboangiitis obliterans and arteriosclerosis obliterans: clinical and prognostic differences. Annals of Internal Medicine 59, 288-296, 1963.

    Mills, J.L., Conte, M.S., Armstrong, D.G., Pomposelli, F.B., Schanzer, A., Sidawy, A.N., and Andros, G. The society for vascular surgery lower extremity threatened limb classification system: risk stratification based on wound, ischemia, and foot infection (WIfI). Journal of Vascular Surgery 59, 220-234, 2014.

    Misch, D.A. Basic strategies of dynamic supportive therapy. Focus 9, 173-268, 2006.

    Mohler, E.R., Sehgal, C.M., Ferrari, V.A., Parmacek, M., Shih, A., and Wilensky, R.L. A novel ultrasound method for evaluation of collateral development in limb ischemia. Vascular Medicine 7, 169-175, 2002.

    Monsky, W.L., Finitsis, S., De Cicco, D., Brock, J.M., Kucharczyk, J., and Latchaw, R.E. A novel mechanical thrombectomy device for retrieval of intravascular thrombus. Cardiovascular and Interventional Radiology 34, 383-390, 2011.

    Moriya, J., Wu, X., Zavala Solorio, J., Ross, J., Liang, X.H., and Ferrara, N. Platelet-derived growth factor C promotes revascularization in ischemic limbs of diabetic mice. Journal of Vascular Surgery 59, 1402-1409, 2014.

    Murata, M., Ohta, N., Fujisawa, S., Tsai, J.Y., Sato, S., Akagi, Y., Takahashi, Y., Neuenschwander, H., and Kador, P.F. Selective pericyte degeneration in the retinal capillaries of galactose-fed dogs results from apoptosis linked to aldose reductase-catalyzed galactitol accumulation. Journal of Diabetes and its Complications 16, 363-370, 2002.

    Nakatsu, M.N., Sainson, R.C., Aoto, J.N., Taylor, K.L., Aitkenhead, M., Pérez-del-Pulgar, S., Carpenter, P.M., and Hughes, C.C. Angiogenic sprouting and capillary lumen formation modeled by human umbilical vein endothelial cells (HUVEC) in fibrin gels: the role of fibroblasts and Angiopoietin-1. Microvascular Research 66, 102-112, 2003.

    Neale, J.P.H., Pearson, J.T., Thomas, K.N., Tsuchimochi, H., Hosoda, H., Kojima, M., Sato, T., Jones, G.T., Denny, A.P., Daniels, L.J., Chandrasekera, D., Liu, P., van Rij, A.M., Katare, R., and Schwenke, D.O. Publisher Correction: Dysregulation of ghrelin in diabetes impairs the vascular reparative response to hindlimb ischemia in a mouse model; clinical relevance to peripheral artery disease. Scientific Reports 10, 17556, 2020.

    Norgren, L., Hiatt, W.R., Dormandy, J.A., Nehler, M.R., Harris, K.A., Fowkes, F.G.R., and Liapis, C.D. Inter-society consensus for the management of peripheral arterial disease (TASC II). Journal of Vascular Surgery 45, S5-S67, 2007.

    Ouriel, K. Peripheral arterial disease. The Lancet 358, 1257-1264, 2001.

    Pu, L.Q., Jackson, S., Lachapelle, K.J., Arekat, Z., Graham, A.M., Lisbona, R., Brassard, R., Carpenter, S., and Symes, J.F. A persistent hindlimb ischemia model in the rabbit. Journal of Investigative Surgery 7, 49-60, 1994.

    Resnick, H.E., Harris, M.I., Brock, D.B., and Harris, T.B. American diabetes association diabetes diagnostic criteria, advancing age, and cardiovascular disease risk profiles: results from the Third National Health and Nutrition Examination Survey. Diabetes Care 23, 176-180, 2000.

    Ricco, J., Thanh, L.P., Belmonte, R., Schneider, F., Valagier, A., Illuminati, G., and Regnault, G.D.L.M. Open surgery for chronic limb ischemia: a review. Journal of Cardiovascular Surgery 54, 719-727, 2013.

    Rivard, A., Silver, M., Chen, D., Kearney, M., Magner, M., Annex, B., Peters, K., and Isner, J.M. Rescue of diabetes-related impairment of angiogenesis by intramuscular gene therapy with adeno-VEGF. The American Journal of Pathology 154, 355-363, 1999.

    Roguin, A., Nitecki, S., Rubinstein, I., Nevo, E., Avivi, A., Levy, N.S., Abassi, Z.A., Sabo, E., Lache, O., Frank, M., Hoffman, A., and Levy, A.P. Vascular endothelial growth factor (VEGF) fails to improve blood flow and to promote collateralization in a diabetic mouse ischemic hindlimb model. Cardiovasc Diabetol 2, 18, 2003.

    Rolland, P., Vidal, V., Mekkaoui, C., Bertrand, M.F., Levrier, O., and Bartoli, J.M. Embolization-driven occlusion of the abdominal aortic aneurysmal sac as the basis of prevention of endoleaks in a new swine model. European Journal of Vascular and Endovascular Surgery 31, 28-35, 2006.

    Rose, G.A. The diagnosis of ischaemic heart pain and intermittent claudication in field surveys. Bulletin of the World Health Organization 27, 645, 1962.

    Rushing, A.M., Donnarumma, E., Polhemus, D.J., Au, K.R., Victoria, S.E., Schumacher, J.D., Li, Z., Jenkins, J.S., Lefer, D.J., and Goodchild, T.T. Effects of a novel hydrogen sulfide prodrug in a porcine model of acute limb ischemia. Journal of Vascular Surgery 69, 1924-1935, 2019.

    Seo, H.S., Kim, H.W., Roh, D.H., Yoon, S.Y., Kwon, Y.B., Han, H.J., Chung, J.M., Beitz, A.J., and Lee, J.H. A new rat model for thrombus-induced ischemic pain (TIIP); development of bilateral mechanical allodynia. Pain 139, 520-532, 2008.

    Serruys, P.W., Morice, M.C., Kappetein, A.P., Colombo, A., Holmes, D.R., Mack, M.J., Ståhle, E., Feldman, T.E., Van Den Brand, M., and Bass, E.J. Percutaneous coronary intervention versus coronary-artery bypass grafting for severe coronary artery disease. New England Journal of Medicine 360, 961-972, 2009.

    Shireman, P.K., and Quinones, M.P. Differential necrosis despite similar perfusion in mouse strains after ischemia1. Journal of Surgical Research 129, 242-250, 2005.

    Shweiki, D., Itin, A., Soffer, D., and Keshet, E. Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature 359, 843, 1992.

    Sigvant, B., Wiberg-Hedman, K., Bergqvist, D., Rolandsson, O., Andersson, B., Persson, E., and Wahlberg, E. A population-based study of peripheral arterial disease prevalence with special focus on critical limb ischemia and sex differences. Journal of Vascular Surgery 45, 1185-1191, 2007.

    Silvestre, J.S., Mallat, Z., Duriez, M., Tamarat, R., Bureau, M.F., Scherman, D., Duverger, N., Branellec, D., Tedgui, A., and Levy, B.I. Antiangiogenic effect of interleukin-10 in ischemia-induced angiogenesis in mice hindlimb. Circulation Research 87, 448-452, 2000.

    Skjeldal, S., Nordsletten, L., Kirkeby, O., Grøgaard, B., Bjerkreim, I., Mowinckel, P., Torvik, A., and Reikerås, O. Perfusion in the anterior tibial muscle measured by laser Doppler flowmetry after graded periods of hindlimb ischemia in rats. International Journal of Microcirculation, Clinical and Experimental 12, 107-118, 1993.

    Sturek, M., Tune, J., and Alloosh, M. Ossabaw Island miniature swine: metabolic syndrome and cardiovascular assessment. Swine in the Laboratory: Surgery, Snesthesia, Imaging, and Experimental Techniques, CRC Press, Boca Raton 14, 451-465, 2015.

    Tateishi-Yuyama, E., Matsubara, H., Murohara, T., Ikeda, U., Shintani, S., Masaki, H., Amano, K., Kishimoto, Y., Yoshimoto, K., and Akashi, H. Therapeutic angiogenesis for patients with limb ischaemia by autologous transplantation of bone-marrow cells: a pilot study and a randomised controlled trial. The Lancet 360, 427-435, 2002.

    Thorgeirsson, T.E., Geller, F., Sulem, P., Rafnar, T., Wiste, A., Magnusson, K.P., Manolescu, A., Thorleifsson, G., Stefansson, H., and Ingason, A. A variant associated with nicotine dependence, lung cancer and peripheral arterial disease. Nature 452, 638, 2008.

    Tibbles, P.M., and Edelsberg, J.S. Hyperbaric-oxygen therapy. New England Journal of Medicine 334, 1642-1648, 1996.

    Tunis, S.R., Bass, E.B., and Steinberg, E.P. The use of angioplasty, bypass surgery, and amputation in the management of peripheral vascular disease. New England Journal of Medicine 325, 556-562, 1991.

    Varu, V.N., Hogg, M.E., and Kibbe, M.R. Critical limb ischemia. Journal of Vascular Surgery 51, 230-241, 2010.

    Vogt, M.T., Wolfson, S.K., and Kuller, L.H. Lower extremity arterial disease and the aging process: a review. Journal of Clinical Epidemiology 45, 529-542, 1992.

    Weissler, E.H., Narcisse, D.I., Rymer, J.A., Armstrong, E.J., Secemsky, E., Gray, W.A., Mustapha, J.A., Adams, G.L., Ansel, G.M., Patel, M.R., and Jones, W.S. Characteristics and Outcomes of Patients With Diabetes Mellitus Undergoing Peripheral Vascular Intervention for Infrainguinal Symptomatic Peripheral Artery Disease. Vascular and Endovascular Surgery 55, 124-134, 2021.

    Whiting, D.R., Guariguata, L., Weil, C., and Shaw, J. IDF diabetes atlas: global estimates of the prevalence of diabetes for 2011 and 2030. Diabetes Research and Clinical Practice 94, 311-321, 2011.

    Wolff, S.P., and Dean, R. Glucose autoxidation and protein modification. The potential role of ‘autoxidative glycosylation’in diabetes. Biochemical Journal 245, 243-250, 1987.

    Yip, H.K., Sun, C.K., Tsai, T.H., Sheu, J.J., Kao, Y.H., Lin, Y.C., Shiue, Y.L., Chen, Y.L., Chai, H.T., and Chua, S. Tissue plasminogen activator enhances mobilization of endothelial progenitor cells and angiogenesis in murine limb ischemia. International Journal of Cardiology 168, 226-236, 2013.

    Youn, J., Gao, L., and Cai, H. The p47 phox-and NADPH oxidase organiser 1 (NOXO1)-dependent activation of NADPH oxidase 1 (NOX1) mediates endothelial nitric oxide synthase (eNOS) uncoupling and endothelial dysfunction in a streptozotocin-induced murine model of diabetes. Diabetologia 55, 2069-2079, 2012.

    Yusuf, S., Zucker, D., Passamani, E., Peduzzi, P., Takaro, T., Fisher, L., Kennedy, J., Davis, K., Killip, T., and Norris, R. Effect of coronary artery bypass graft surgery on survival: overview of 10-year results from randomised trials by the Coronary Artery Bypass Graft Surgery Trialists Collaboration. The Lancet 344, 563-570, 1994.

    Zhang, P., Liang, Y., Kim, H., and Yokota, H. Evaluation of a pig femoral head osteonecrosis model. Journal of Orthopaedic Surgery and Research 5, 15, 2010.

    Zhuang, Z.W., Gao, L., Murakami, M., Pearlman, J.D., Sackett, T.J., Simons, M., and de Muinck, E.D. Arteriogenesis: noninvasive quantification with multi-detector row CT angiography and three-dimensional volume rendering in rodents. Radiology 240, 698-707, 2006.

    Zhuang, Z.W., Shi, J., Rhodes, J.M., Tsapakos, M.J., and Simons, M. Challenging the surgical rodent hindlimb ischemia model with the miniinterventional technique. Journal of Vascular and Interventional Radiology 22, 1437-1446, 2011.

    Ziegler, M.A., Distasi, M.R., Bills, R.G., Miller, S.J., Alloosh, M., Murphy, M.P., Akingba, A.G., Sturek, M., Dalsing, M.C., and Unthank, J.L. Marvels, mysteries, and misconceptions of vascular compensation to peripheral artery occlusion. Microcirculation 17, 3-20, 2010.

    Zimmerman, D.W. Comparative power of Student t test and Mann-Whitney U test for unequal sample sizes and variances. The Journal of Experimental Education 55, 171-174, 1987.

    下載圖示 校內:2025-09-26公開
    校外:2025-09-26公開
    QR CODE