| 研究生: |
范乃妍 Fan, Nai-Yen |
|---|---|
| 論文名稱: |
硫酸鈣骨水泥性質研究 Investigation of Properties of Calcium Sulfate Cement |
| 指導教授: |
陳瑾惠
Chern Lin, Jiin-Huey 朱建平 Ju, Chien-Ping |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 81 |
| 中文關鍵詞: | 硫酸鈣骨水泥 、生物可吸收性陶瓷 、生醫材料 |
| 外文關鍵詞: | calcium sulfate, bone conductivity, biomaterial |
| 相關次數: | 點閱:185 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
中文摘要
硫酸鈣在生醫材料領域,已展現優良的生物相容性及骨引導性,但缺點是植入人體後吸收速度會過快。本實驗中將半水硫酸鈣與水溶液反應,欲作抗壓強度測試的試片勢將原本的cement填入不銹鋼模中使其在模中硬化,最後將試片置於模擬人體的生理環境-Hanks’ solution中。一天抗壓強度測試之結果,發現bM的溶液C能使硫酸鈣骨水泥的抗壓強度達36MPa,即使浸泡了三十天之久,仍然有17MPa。
XRD分析顯示二水硫酸鈣是半水硫酸鈣與水溶液反應後之最終相。SEM觀察結果則發現二水硫酸鈣的針狀結構,其形態表現會隨著反應的硬化劑種類而有所改變;本實驗中,此較高的抗壓強度將對應粗短型的針狀結構。
改變溶液C的pH值以會影響硫酸鈣的水合反應行為;添加氫氧化鈉在溶液C中會造成反應加快,這個現象亦可解釋為何此時硫酸鈣骨水泥的抗壓強度會大幅衰退,且二水硫酸鈣結晶長度相當長。
Abstract
Being the biomaterial, calcium sulfate has shown excellent biocompatibility and bone conductivity but has rapid resorption in the human body. An attempt was made by mixing calcium sulfate hemihydrate and aqueous solutions. Samples for compression test were obtained putting the cement paste into stainless steel moulds where allowed to set, and then they were immersed in Hanks’ solution to simulate a physiological environment. For cement immersed one day, the highest compressive strength, 36MPa, was obtained for the samples mixed with solution C of concentration b while the cement immerse thirty days still had strength, 17MPa.
X-ray analysis showed that calcium sulfate dihydrate is the final phase when calcium sulfate hemihydrate reacted with aqueous solution. In observation of SEM, the cement that initially was pure calcium sulfate hemihydrate that hydration had been processed mixing with aqueous solution and formed calcium sulfate dihydrate with their needles characteristic. These needle structure morphologies would change when calcium sulfate hemihydrate reacted with different hardening solutions. In this experiment, higher compressive strength would leaded by the short and wide needle structure.
The behavior of hydration of calcium sulfate would varied by changing pH values. Adding NaOH in solution C to adjust higher pH value fastened the hydration reaction. This phenomenon could explain why compressive strengths of samples in these cases were so poor. Relative to it’s length, calcium sulfate dihydrate crystals were longer.
參考文獻
A L.Breed. Experimental production of vascular hypotension, and bone
marrow and fat embolism with methylmethacrylate cement. Traumatic
hypertension of bone. Clin Orthop 102: 227-44, 1974.
A.P. Pierson, D. Bigelow , M. Hamonic Bone grafting with boplant. Results in thirty-three cases. J Bone & Joint Surg 50(B): 364–368, 1968A.S.
Myerson. Handbook of Industrial Crystallization Butterworth Heinemann Series, Chemical Engineering. USA, 1993.
B. D.Katthagen “Bone regeneration with bone substitutes”, Springer-Verlag, Berlin, 1987.
C. Gao, J. Gao, X. You, S. Huo, X. Li, Y. Zhang, W. Zhang. Fabrication of calcium sulfate/PLLA composite for boneRepair. J Biomed Mater Res 73(A): 244-253, 2005.
D.A. Nussbaum, Gailloud P, Murphy K (2004) The chemistry of acrylic bone cements and implications for clinical
use in image-guided therapy. J Vasc Interv Radiol 15:121–126
D. M. Roy, S. K. Linnehan, Hydroxyapatite formed from coral skeletal carbonate by hydrothermal exchange, Nature 247: 220-222, 1974.
de K.Groot Medical applications of calcium phosphate
bioceramics. The Centennial Memorial Issue of The Ceramic
Society of Japan 99: 943-953, 1991.
H. Buchardt The biology of bone graft repair. Clinical Orthop 174: 28-42, 1983.
H.K. David., Metals in medical applications, Current Option
in Solid State & Material Science 3: 309-316,1998.
J.B. Park. Biomaterials, An Introduction. Plenum Press. New
York, 1979.
J.B. Park. Biomaterials Science and Engineering. Plenum Press. New York and London, 1985.
J.D.C.McConnell, D.M. Astill and P.L. Hall. The Pressure
Dependence of the Dehydration of Gypsum to Bassanite. Mineralogical Magazine. 51: 453-457, 1987.
J.J. Verlaan, F.C. Oner, Slootweg PJ, Verbout AJ, Dhert WJ Histologic changes after vertebroplasty. J Bone Joint Surg [Am] 86(A):1230-1238, 2004.
L.Amathieu and R.Boistelle "Crystallization Kinetics of Gypsum from Dense Suspension of Hemihydrate in Water, Journal of Crystal Growth 88: 184, 1988.
L.F. Kuznetsova and O.I. Lomovskii, Thermal Breakdown of Gypsum Crystals. Inorganic Materials 21: 1534-1536, 1985.
L.L.Hench Bioceramics: from concept to clinic. J Am Ceram
Soc 74: 1487-1510, 1991.
L.M. Jonck, C.J. Grobbelaar. The biological compatibility of glass
ionomer cement in joint replacement. Clin. Mater. 4: 85-107, 1989.
M.J. Broom, J.V Banta., T.S. Renshaw. Spinal fusion augmented by Luque-rod segmental instrumentation for neuromuscular scoliosis. J
Bone Joint Surg Am. 71:32-44, 1989.
M. Jarcho. Calcium phosphate ceramics as hard tissue. Clin. Orthop. Rel. Res. 157: 259-279, 1981.
M. Nilsson, E. Ferna´ndez, S. Sarda,1L. Lidgren, J. A. Planell.
Characterization of a novel calcium phosphate/sulphate bone cement. J Biomed Mater Res 61: 600–607, 2002.
M. Nilsson, L. Wielanek, J.S. Wang, K. E. Tanner, L. Lidgren. Factors Influencing the Compressive Strength of an Injectable Calcium Sulfate-Hydroxyapatite Cement. Journal of Materials Science: Materials in Medicine 14: 399-404, 2003.
M.S.Block, T.N.Kent, Guerra. Implants in dentistry. W.B. Saunders Company,1997
P. Elsevier, Amsterdam-oxford-New York-Tokyo. 3-27,1987.
P.Henman, D.Finlayson. Ordering allograft by weight: suggestions for the efficient use of frozen bone-graft for impaction grafting. J Arthroplasty. 15: 368-371, 2000.
R.W. Hu, H.H. Bohlman Fracture at the iliac bone graft harvest site after fusion of the spine. Clin Orthop. 309: 208-213, 1994.
S.F. Hulbert, L.L.Hench, D.Forbers, L.S. Bowman. History of bioceramics. Ceram Internat 8: 131-140, 1982.
S.F. Hulbert, J.C. Bokros, L.L. Hench, Wilson J, G. Heimke.
T. Kokubo, Recent progress in glass-based materials for biomedical applications. The Centennial Memorial Issue of The Ceramic Society of Japan 99: 965-973, 1991. R. Mongiorgi and A. Krajewski. Mineralogical alterations in osteoporotic bone tissue structure. Biomaterials. 2: 147-151,
1981.
P. Vincenzini, Ceramics in sub-stitutive and reconstructive surgery, Elsevier Science Publishers B.V., 1991.
R.W.G. Wyckoff. Crystal Structures 504-507, 643-644, 1981.
Rateitschak KH, Wolf HF. Color Atlas of Dental Medicine. Thieme Medical Publishers, 1995.
W.R. Moore, S.E. Graves, G.I. Bain. Synthetic Bone Graft Substitutes. ANZ J. Surg 71: 354-361,2001.
Ying. Nanocrystalline apatites and composite prostheses incorporating them, and method for their production ,US patent 6013591, 2000.
www.stpeters.k12.nf.ca/skel.jpg
darkwing.uoregon.edu/ ~louiso/
www.sirinet.net/~jgjohnso/skeleton.html
www.suntex.com.tw
www.gec.jp/CTT_DATA/WMON/CHAP_4/html/Wmon-094.html
周邦彥, 骨科生醫材料之發展與應用, 技術與訓練27卷4期, 163-171,
2002.
梁繼文, 礦物學, 五南出版社, 1984
張炳龍, ROSS 組織學, 合記圖書出版社, 147-158, 1991.
汪建民, 材料分析, 中國材料科學學會, 1998.
梁智仁, 骨質疏鬆致骨折專治生物材料的研製與市場化, 京港學術交流第五十四期, 2002