簡易檢索 / 詳目顯示

研究生: 王建智
Wang, Jian-Jhih
論文名稱: 資料型隨機子空間法於系統之模態參數識別
Identification of Modal Parameters of System by Data-driven Stochastic Subspace Identification
指導教授: 江達雲
Chiang, Dar-Yun
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 92
中文關鍵詞: 模態參數識別隨機子空間識別法奇異值分解
外文關鍵詞: Stochastic Subspace Identification, Identification of Modal Parameters
相關次數: 點閱:110下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文探討資料型隨機子空間識別法(Data-driven Stochastic Subspace Identification,SSI-DATA)於定常環境振動模態參數識別之應用。隨機子空間識別法可分為協方差型的隨機子空間識別法(Covariance-driven Stochastic Subspace Identification,SSI-COV)及SSI-DATA,SSI-COV是由輸出資料計算相關函數,再進行模態參數識別;SSI-DATA則是藉由計算未來輸出向量投射至過去輸出向量空間的投影矩陣,再進行模態參數識別。SSI-COV在計算上需進行相關函數運算且相關函數須滿足無限長條件,但因資料無限長條件未能滿足之情況,故SSI-DATA在推導過程較為完備。

    而SSI-DATA在計算的過程,容易有資料過大,計算效率不彰的情況,故吾人也提出幾點改良以提高其計算效率。吾人將SSI-COV求取系統矩陣的作法引入SSI-DATA,並且探討可觀測矩陣的選取,進而去推導投影矩陣的改良,爾後對改良之投影矩陣進行奇異值分解(Singular Value Decomposition, SVD)時,才不會有矩陣維度過大使計算難度增加的情況發生。也提出另一點是由同ㄧ筆預估狀態矩陣去提取出兩個有遞迴關係的預估狀態矩陣,因此可省略掉重新計算下一時刻預估狀態矩陣的步驟,進而提高計算效率,且也可配合改良之投影矩陣的作法,進而使計算效率達到最大化。

    The purpose of this thesis discusses the application of Data-driven Stochastic Subspace Identification (SSI-DATA) in Modal-Parameter Identification of stationary ambient vibration. SSI can be divided into Covariance-driven Stochastic Subspace Identification (SSI-COV) and SSI-DATA. SSI-COV is about calculating the correlation functions by output data, and then proceeding the Modal-Parameter Identification. However, SSI-DATA calculates future outputs, projects to the projection of past outputs, then, proceeds the Modal-Parameter Identification. It’s necessary to count the correlation functions which must reach the unlimited condition when using SSI-COV. But the unlimited condition can’t be satisfied. Therefore, using SSI-DATA in deductive process is more complete.
    This thesis also proposes several improvements to enhance the computational efficiency, as a result of the poor computational efficiency, and the excessive quantity of data in the calculating process when using SSI-DATA. After introducing the method that SSI-COV quests for the system matrix into SSI-DATA, discussing the selection of observability matrix, and then deriving improvements of projection. The situation that dimensions of the matrix is too many which raises the calculation difficulty won’t happen when using Singular Value Decomposition (SVD) in the improved projection. Another point is to acquire two estimate matrix which have recursion relation bases on an estimate matrix. It’s not only can neglect the step to recalculate the next moment estimate matrix to enhance the computational efficiency, but also can coordinate the manner of the improved projection to reach the maximum computational efficiency.

    目錄 致謝 ii 摘要 iii 目錄 viii 表目錄 xi 圖目錄 xiii 第一章、 緒論 1 1-1 引言 1 1-2 模態分析與系統識別 2 1-3 文獻回顧 4 1-4 研究動機與目的 8 1-5 本文架構 8 第二章、 環境振動之相關理論 10 2-1 引言 10 2-2 隨機過程(Random Process)與隨機振動(Random Vibration) 10 2-2-1 定常(Stationary Process)與非定常過程(Nonstationary Process) 11 2-2-2 全態過程(Ergodic Process) 11 2-2-3 相關函數(Correlation function)與協方差(Covariance) 12 2-3 結構系統之自由振動分析 13 2-4 受定常白訊激勵之相關函數法 14 第三章、 時域法模態參數識別理論 19 3-1 引言 19 3-2 隨機子空間識別法 20 3-2-1 狀態空間 20 3-2-2 量測資料 25 3-2-3 協方差型隨機子空間識別法 26 3-2-4 正交投影 33 3-2-5 卡爾曼濾波 35 3-2-6 資料型隨機子空間識別法 40 3-3 資料型隨機子空間識別法之改良 44 3-3-1 直接利用可觀測矩陣求取系統矩陣 44 3-3-2 預估狀態矩陣之改良 45 3-3-3 可觀測矩陣選擇之探討 47 3-3-4 投影矩陣之改良 49 第四章、 數值模擬 53 4-1 引言 53 4-2 具有相近模態及高阻尼系統之數值模擬 53 4-3 鏈模型之模態參數識別 57 4-4 受定常白訊鏈模型之模態參數識別 59 4-5 不同可觀測矩陣選擇之數值模擬 62 4-6 投影矩陣改良之數值模擬 63 4-7 直接利用可觀測矩陣求取系統矩陣之數值模擬 65 4-8 預估狀態矩陣改良之數值模擬 67 第五章、 結論 69 參考文獻 71

    參考文獻
    [1] Ewins, D. J., “Modal Testing: Theory and Practice,” Research Studies Press, 1984.
    [2] Ibrahim, S. R. and Mikulcik, E. C., “A Method for the Direst Identification of Vibration Parameters from Free Response,” Shock and Vibration Bulletin, Vol. 47, Part. 4, pp. 183-198, Sept. 1977.
    [3] Ibrahim, S. R. and Mikulcik, E. C., “The experimental Determination of Vibration Parameters from Time Responses,” Shock and Vibration Bulletin, Vol. 46, Pt. 5, pp. 183-198, Aug. 1976.
    [4] Pappa, R. S. and Ibrahim, S. R., “A Parametric Study of Ibrahim Time Domain Modal Analysis,” Shock and Vibration Bulletin, Vol.51, Part. 3, pp. 43-72, 1981.
    [5] 林宇哲, 亞伯拉罕時域法於具模態干涉之系統模態參數識別, 碩士論文, 國立成功大學航空太空工程學研究所, 2016.
    [6] Juang, J. N. and Pappa, R. S., “An Eigensystem Realization Algorithm for Modal Parameter Identification and Modal Reduction, ”Journal of Gudance and Control Dynamics,AIAA,” Vol.8, No. 5, pp.620-627, 1985.
    [7] Juang, J. N. and Pappa, R. S., “Effects of Noise on Modal Parameter Identification by the Eigensystem Realization Algorithm, ”Journal of Gudance and Control Dynamics,” AIAA, Vol. 9, No. 3, pp.294-303, 1986.
    [8] Juang, J. N., Cooper, J. E. and Wright J. R., “An Eigensystem Realization Algorithm using Data Correlations(ERA/DC) for Modal Parameter Identification,” Control-Theory and Advanced Technology, Vol. 4, No. 1, pp. 5-14, March, 1988.
    [9] 陳忠義, 相近模態在時域之模態參數識別, 碩士論文, 國立成功大學航空太空工程學研究所, 2015
    [10] James, G.H., Carne.T.G.and Lauffer, J.P., “The Natural Excitation Technique for modal Parameter Extraction from Operating Wind Yurbines,” SAND92-1666.UC-261, Sandia National Aboratories, 1993.
    [11] Carne, T.G., Lauffer, J.P., Gomez,A.J.and Benjannet, H., “Modal Testing an Immense Flexible Structure Using Narural and Artificial Excitation,” The International Joural of Analytical and Experimental Modal Analysis,The Society of Experimental Mechanics, Oct. 1998.
    [12] 林章生, 相關函數法於非定常環境振動之模態參數識別研究, 碩士論文, 國立成功大學航空太空工程學研究所, 2004.
    [13] 曹松華, 隨機遞減法於非定常環境振動模態參數識別之應用, 碩士論文, 國立成功大學航空太空工程學研究所, 2004.
    [14] 蘇芳禾, 特徵系統實現法於定常環境振動之模態參數識別研究, 碩士論文, 國立成功大學航空太空工程學研究所, 2006.
    [15] Van Overschee, P., De Moor B., “Subspace Algorithm for the Stochastic Identification Problem, ” In Proceedings of the 30th IEEE Conference on Decision and Control, pp. 1321-1326, 1991.
    [16] Peeters, B. and Roeck, G.D., “Reference-based stochastic subspace identification for output-only modal analysis,” Mech. Syst. Signal Process. 13 (6), 855–878. 1999.
    [17] Van Overschee, P., and De Moor B., “Subspace Algorithm for the Stochastic Identification Problem,” Automatic, Vol. 29, No. 3, pp. 649-660, 1993.
    [18] G. H. Golub and C. Reinsch., “Singular Value Decomposition and Least Squares Solutions,” Numerische Mathematik, 14:403-420, 1970.
    [19] Strang G. and Borre K., “Linear algebra, geodesy, and GPS,” Wellesley-Cambridge Press,”1997.
    [20] Erwin Kreyszig., “Advanced Engineering Mathematics,” 10th Edition, 2010.
    [21] James Hu, S. L., Yang, W. L., Liu, F.S. and Li, H. J., “Fundamental comparison of time-domain exoerimental modal analysis methods based on high-and first-order matrix models”, Journal of sound and Vibration, Vol.333, No.25, pp.6869-6884, 2014.
    [22] K. A. Petsounis and S. D. Fassois, “Parametric Time-Domain Methods For The Identification Of Vibrating Structure-A Critical Comparison And Assessment”, Mechanical Systems and Signal Processing, Vol.15, No.6, pp.1031-1060, 2001.
    [23] Chang-sheng Lin, “Ambient modal identification using non-stationary correlation technique”, Archive of Applied Mechanics, 2016.

    無法下載圖示 校內:立即公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE