簡易檢索 / 詳目顯示

研究生: 洪仕謙
Hung, Shih-Chien
論文名稱: RAIM輔助之GNSS/INS緊耦合式整合系統
RAIM Aided GNSS/INS Tightly-coupled Integration System
指導教授: 詹劭勳
Jan, Shau-Shiun
學位類別: 碩士
Master
系所名稱: 工學院 - 民航研究所
Institute of Civil Aviation
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 82
中文關鍵詞: 全球定位系統北斗衛星導航系統慣性導航緊耦合整合式導航接收機自主完整性監測
外文關鍵詞: Global Positioning System (GPS), Beidou Navigation Satellite System (BDS), Inertial Navigation System, Tightly-coupled Integration System, Receiver Autonomous Integrity Monitoring (RAIM)
相關次數: 點閱:220下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要

    論文題目:RAIM輔助之GNSS/INS緊耦合式整合系統

    研 究 生:洪仕謙
    指導教授:詹劭勳

    近年來,緊耦合式慣性導航系統(Inertial Navigation System, INS)與全球衛星導航系統(Global Navigation Satellite System, GNSS)之整合系統已經成為熱門研究主題。相較於傳統的全球衛星導航於受限環境下的表現,此整合系統擁有更強健的導航能力並能提供更精確的導航成果。然而,此種緊耦合系統之普及度關鍵在於其成本及可應用之領域。因此,本研究利用低成本消費者等級之慣性導航儀器及全球衛星導航系統接收機,開發出一套不俱動態制約(motion constraint)之緊耦合系統以提升其可應用之領域。然而,為降低在市區環境中衛星訊號受到干擾的衝擊,源於接收機自主監測(Receiver Autonomous Integrity Monitoring, RAIM)及錯誤偵測排除(Fault Detection and Exclusion, FDE)之一致性檢測(consistency check)被導入本研究中,以排除那些遭受干擾的衛星訊號,並達到提升導航性能的目標。擴展式卡曼濾波器(Extended Kalman Filter, EKF) 在本研究中則扮演整和慣性導航及全球衛星導航觀測量之角色。

    藉由分別使用來自全球定位系統(GPS)及北斗衛星導航系統(BDS)之衛星觀測量,三筆分別代表一般都市環境(middle-urban area)、密集都市環境(urban canyon)及包含郊區、一般及密集都市環境之綜合路徑路測資料被用來評估本研究之導航演算法。其中,最後一筆綜合路徑路測資料經本研究之導航演算法後處理後,相比於使用全球定位系統(GPS)衛星觀測量之純緊耦合架構後處理的導航成果,在定位精確度有17.84%之提升。而相比使用北斗衛星導航系統(BDS)衛星觀測量之純緊耦合架構後處理的導航定位精確度,本研究之導航演算法則有35.76%的進步。而有關其他路測資料及更詳細的導航成果與分析,則在本研究第四章呈現。

    關鍵字:全球定位系統、北斗衛星導航系統、慣性導航、緊耦合整合式導航、接收機自主完整性監測

    Abstract

    Title: RAIM Aided GNSS/INS Tightly-coupled Integration System

    Student: Shih-Chien Hung
    Advisor: Shau-Shiun Jan

    The Tightly-Coupled (TC) integration of the Global Navigation Satellite System (GNSS) and the Inertial Navigation System (INS) has become a popular research topic in recent years due to the advantage of being able to provide robust navigation solutions as well as better accuracy in constrained environments compared to conventional stand-alone GNSS positioning. However, the potential applications and the cost are the keys to the popularity of these TC integration systems. Therefore, in this research, a low-cost TC integrated navigation system using a consumer-grade GNSS receiver and INS are developed, where no motion constraints are applied, so the number of potential applications can be increased. Nevertheless, to mitigate the impact of GNSS signal distortion in urban areas, the consistency check originating from the Receiver Autonomous Integrity Monitoring (RAIM) Fault Detection and Exclusion (FDE) algorithm is adopted in this research. Through excluding faulty signals, the navigation performance of the proposed system may thus be improved. The extended Kalman Filter (EKF) is then adopted to fuse the clean GNSS and INS measurements to provide navigation solutions.

    Three sets of data representing middle-urban area, urban canyon and the comprehensive environment including suburban area, middle-urban area and urban canyon are processed using the proposed system. The measurements of two GNSS constellations, Global Positioning System (GPS) and Beidou Navigation Satellite System (BDS), collected in the experiments are adopted separately to evaluate the proposed system. In the case of comprehensive environment, the results showed that the positioning accuracy post-processed by proposed system has 17.84% of improvement compared to that post-processed by pure TC integration algorithm when GPS measurements were adopted, while in the case of comprehensive environment using BDS measurements, the positioning accuracy has 35.76% of improvement compared to that post-processed by pure TC integration algorithm. More details and analysis regarding three sets of road data are given in the CHAPTER 4 of this study.

    Keywords: Global Positioning System (GPS), Beidou Navigation Satellite System (BDS), Inertial Navigation System, Tightly-coupled Integration System, Receiver Autonomous Integrity Monitoring (RAIM).

    Table of Contents 摘要 I Abstract III 誌謝 V Table of Contents VI List of Tables VIII List of Figures IX CHAPTER 1 INTRODUCTION AND OVERVIEW 1 1.1 Background and Previous Works 1 1.2 Motivation and Objectives 3 1.3 Thesis Organization 5 CHAPTER 2 GNSS AND INS Integration 7 2.1 GNSS Measurements 7 2.1.1 Code Phase Measurement 7 2.1.2 Doppler Measurement 8 2.2 Error Sources of GNSS Measurements 8 2.2.1 Ionospheric Delay 9 2.2.2 Tropospheric Delay 10 2.2.3 Multipath and NLOS 10 2.3 Detection and Exclusion of Faulty GNSS Measurements 12 2.3.1 Fault Detection of GNSS Measurements using RAIM 12 2.3.2 Exclusion of Faulty GNSS Measurements 16 2.4 Mechanization of Inertial Navigation System 18 2.4.1 Error Characteristics of IMU 18 2.4.2 INS Error Model 21 2.4.3 Navigation Equations 23 2.4.4 Error Compensation and Discrete Integration of INS 29 2.5 GNSS and INS Integration Architectures 31 CHAPTER 3 GNSS/INS TIGHTLY-COUPLED INTEGRATION 33 3.1 Kalman Filter 33 3.2 Perturbation Analysis 36 3.2.1 Position Error Dynamics 37 3.2.2 Velocity Error Dynamics 38 3.2.3 Attitude Error Dynamics 41 3.3 System Model of Tightly Coupled Integration 44 3.4 Tightly Coupled Integration Measurement Model 47 CHAPTER 4 EXPERIMENTAL RESULTS AND ANALYSES 52 4.1 Experimental Setup 52 4.2 Results and Analysis 55 4.2.1 Results for the Middle-urban Area 55 4.2.2 Results for the Urban Canyon 63 4.2.3 Results for the Comprehensive Environment 71 CHAPTER 5 CONCLUSIONS AND FUTURE WORKS 78 5.1 Conclusions 78 5.2 Future Works 80 References 81

    References

    Alban, S., Akos, D. M., Rock, S. M., & Gebre-Egziabher, D. (2003). Performance analysis and architectures for INS-aided GPS tracking loops. Paper presented at the Proceedings of the Institute of Navigation National Technical Meeting.
    BDS-ICD. (2013). Space Interface Control Document. China Satellite Navigation Office.
    Bhattacharyya, S., & Gebre-Egziabher, D. (2015). Kalman filter–based RAIM for GNSS receivers. IEEE Transactions on aerospace and electronic systems, 51(3), 2444-2459.
    Bonnor, N. (2014). Principles of GNSS, Inertial, and Multisensor Integrated Navigation Systems–Second EditionPaul D. Groves Artech House, 2013, 776 pp ISBN-13: 978-1-60807-005-3. The Journal of Navigation, 67(1), 191-192.
    Brown, R. G. (1992). A baseline GPS RAIM scheme and a note on the equivalence of three RAIM methods. Navigation, 39(3), 301-316.
    El-Sheimy, N., Schwarz, K.-P., Wei, M., & Lavigne, M. (1995). VISAT- A mobile city survey system of high accuracy. Paper presented at the ION GPS-95.
    Farrell, J., & Barth, M. (1999). The global positioning system and inertial navigation (Vol. 61): Mcgraw-hill New York, NY, USA:.
    Gebre-Egziabher, D., & Gleason, S. (2009). GNSS applications and methods: Artech House.
    GPS-ICD. (2013). Global positioning systems directorate system engineering & integration interface specification IS-GPS-200H. Navstar GPS Space Segment/Navigation User Interfaces.
    Grejner-Brzezinska, D., Da, R., & Toth, C. (1998). GPS error modeling and OTF ambiguity resolution for high-accuracy GPS/INS integrated system. Journal of Geodesy, 72(11), 626-638.
    Hopfield, H. (1969). Two‐quartic tropospheric refractivity profile for correcting satellite data. Journal of Geophysical research, 74(18), 4487-4499.
    Hsu, L.-T., Tokura, H., Kubo, N., Gu, Y., & Kamijo, S. (2017). Multiple faulty GNSS measurement exclusion based on consistency check in urban canyons. IEEE Sensors Journal, 17(6), 1909-1917.
    Kalman, R. E. (1960). A new approach to linear filtering and prediction problems.
    Klobuchar, J. A. (1987). Ionospheric time-delay algorithm for single-frequency GPS users. IEEE Transactions on aerospace and electronic systems(3), 325-331.
    Lee, Y.-E. (2017). Combined Algorithm for Multi-Constellation GNSS Satellite Selection and Road Model for Open-sky and Constrained Environments.
    Lee, Y. C. (2013). New Advanced RAIM with Improved Availability for Detecting Constellation‐wide Faults, Using Two Independent Constellations. Navigation: Journal of the Institute of Navigation, 60(1), 71-83.
    Nassar, S. (2003). Improving the inertial navigation system (INS) error model for INS and INS/DGPS applications: University of Calgary, Department of Geomatics Engineering.
    Nayak, R. A. (2000). Reliable and continuous urban navigation using multiple GPS antennas and a low cost IMU: University of Calgary.
    Noureldin, A., Karamat, T. B., & Georgy, J. (2012). Fundamentals of inertial navigation, satellite-based positioning and their integration: Springer Science & Business Media.
    Odijk, D. (2003). Ionosphere-free phase combinations for modernized GPS. Journal of surveying engineering, 129(4), 165-173.
    Parkinson, B. W., & Enge, P. K. (1996). Differential gps. Global positioning system: Theory and applications, 2, 3-50.
    Petovello, M. G. (2003). Real-time integration of a tactical-grade IMU and GPS for high-accuracy positioning and navigation: Citeseer.
    Rakipi, A., Kamo, B., Cakaj, S., Kolici, V., Lala, A., & Shinko, I. (2015). Integrity monitoring in navigation systems: Fault detection and exclusion RAIM algorithm implementation. Journal of Computer and Communications, 3(06), 25.
    Rogers, R. M. (2007). Applied mathematics in integrated navigation systems: American Institute of Aeronautics and Astronautics.
    Saastamoinen, J. (1972). Atmospheric correction for the troposphere and stratosphere in radio ranging satellites. The use of artificial satellites for geodesy, 15, 247-251.
    Shin, E.-H. (2001). Accuarcy improvement of low cost INS/GPS for land applications: Graduate Studies.
    Sukkarieh, S. (2000). Low cost, high integrity, aided inertial navigation systems for autonomous land vehicles.
    Teunissen, P., & Montenbruck, O. (2017). Springer handbook of global navigation satellite systems: Springer.
    Wang, N., Li, Z., Li, M., Yuan, Y., & Huo, X. (2018). GPS, BDS and Galileo ionospheric correction models: an evaluation in range delay and position domain. Journal of Atmospheric and Solar-Terrestrial Physics, 170, 83-91.

    無法下載圖示 校內:2025-07-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE