| 研究生: |
陳柏憲 Chen, Bo-Shian |
|---|---|
| 論文名稱: |
比較生醫級二號、四號純鈦其生物親和性差異並藉由親水性表面改質技術增進細胞黏附力之研究 Comparison of biocompatibility on medical titanium grade 2 and 4 and enhance cell adhesion by hydrophilic modification |
| 指導教授: |
王清正
Wang, Ching-Cheng |
| 共同指導教授: |
李澤民
Lee, Tzer-Min |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 製造資訊與系統研究所 Institute of Manufacturing Information and Systems |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 49 |
| 中文關鍵詞: | 生物親和性 、細胞黏附力 、親水性表面改質 、骨母細胞 、鈦金屬 |
| 外文關鍵詞: | biocompatibility, cell adhesion force, hydrophilic modification, osteoblast, titanium |
| 相關次數: | 點閱:162 下載:10 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
鈦金屬因為具有良好的機械性質與生物親和性,被廣泛的運用在骨科與牙科植體中。但很少的研究指出,不同的純鈦是否具有生物親和性差異。因此本論文有兩大研究目標。第一,利用細胞刮取儀去量化並評估骨母細胞在生醫用純鈦二號、四號的初期黏附力。結果顯示,細胞在純鈦二號上的黏附表現較佳,具有較好的表現。
第二,我們利用不同親水性表面改質技術探討並比較生物親和性差異。從以下方法分析表面性質:利用掃描探針顯微鏡量測粗糙度、以化學分析電子儀分析氧光譜、用靜態接觸角評估親疏水性大小並觀察細胞增殖表現、細胞形態,評估生物親和性。利用低/可變式真空顯微鏡記錄細胞形態,Alamar Blue 檢試劑則是用來測量細胞增殖的表現。
從電子顯微鏡下觀察骨母細胞的細胞形態,經氧氣電漿改質的鈦金屬,細胞有較多的片狀偽足與絲狀偽足生長,可以讓細胞更黏附在材料表面。我們猜測利用氧氣電漿改質鈦金屬表面,將有助於增進細胞黏附力,並有機會提升骨整合速率。
Titanium are widely used in dental and orthopedic implants due to their good mechanical properties and biocompatibility. Few studies indicated that the comparison of biocompatibility between commercially pure (cp) titanium. Thus, we have two goals in this study. First, to evaluate the initial adhesion force of osteoblast between two medical titanium grade 2 and 4 by a cytodetacher. And then, we got the result that the cells seem to prefer the grade 2 titanium and showed the better adhesion force with it.
Secondly, we also compared the effect of biocompatibility on osteoblast by different hydrophilic modification. The surface characterization was measured by below analysis. The surface roughness is measured by scanning
probe microscope (SPM), the chemical properties of surface oxide by Electron Spectroscopy for Chemical Analysis (ESCA), the wettability by static contact angle assessment method. And the cytocompatibility is assessed using cell proliferation and morphology. Scanning Electron Microscopy (LV-SEM) is employed to take images of cell morphology, and cell proliferation is measured by Alamar-Blue assay.
In the SEM images, we have observed that the osteoblast seems to prefer the oxygen plasma-modified titanium and showed more lamellipodia and filopodia grown which could make the cell adhesive. So, we hypothesize that the plasma modification would enhance the cell adhesion and make possible to increase the osseointegration rate.
[1] van Der Pouw, C. T. M., Johansson, C. B., Mylanus, E. A. M., Albrektsson, T. & Cremers, C. W. R. J. Removal of titanium implants from the temporal bone: Histologic findings. American Journal of Otology 19, 46-51 (1998).
[2] Browne, M. & Gregson, P. J. Surface modification of titanium alloy implants. Biomaterials 15, 894-898 (1994).
[3] Dekker, A. et al. ADHESION OF ENDOTHELIAL CELLS AND ADSORPTION OF SERUM PROTEINS ON GAS PLASMA-TREATED POLYTETRAFLUOROETHYLENE. Biomaterials 12, 130-138 (1991).
[4] Feng, B., Weng, J., Yang, B. C., Qu, S. X. & Zhang, X. D. Characterization of surface oxide films on titanium and adhesion of osteoblast. Biomaterials 24, 4663-4670 (2003).
[5] Feng, B., Weng, J., Yang, B. C., Chen, J. Y., Zhao J. Z., He L., Qi S. K., & Zhang, X. D. Surface characterization of titanium and adsorption of bovine serum albumin. Materials Characterization 49, 129-137 (2003).
[6] Larsson, C. et al. Bone response to surface-modified titanium implants: Studies on the early tissue response to machined and electropolished implants with different oxide thicknesses. Biomaterials 17, 605-616 (1996).
[7] Larsson, C. et al. Bone response to surface modified titanium implants: Studies on electropolished implants with different oxide thicknesses and morphology. Biomaterials 15, 1062-1074 (1994).
[8] Van Kooten, T. G., Schakenraad, J. M., Van Der Mei, H. C. & Busscher, H. J. Influence of substratum wettability on the strength of adhesion of human fibroblasts. Biomaterials 13, 897-904 (1992).
[9] Zhu, X., Chen, J., Scheideler, L., Reichl, R. & Geis-Gerstorfer, J. Effects of topography and composition of titanium surface oxides on osteoblast responses. Biomaterials 25, 4087-4103 (2004).
[10] Lim, Y. J. & Oshida, Y. Initial contact angle measurements on variously treated dental/medical titanium materials. Bio-Medical Materials and Engineering 11, 325-341 (2001).
[11] Meyer, U., Szulczewski, D. H., Moeller, K., Heide, H. & Jones, D. B. Attachment kinetics and differentiation of osteoblasts on different biomaterials. Cells and Materials 3, 129-140 (1993).
[12] Ahmad, M., Gawronski, D., Blum, J., Goldberg, J. & Gronowicz, G. Differential response of human osteoblast-like cells to commercially pure (cp) titanium grades 1 and 4. Journal of Biomedical Materials Research 46, 121-131 (1999).
[13] Andersson, M. et al. Effect of molecular mobility of polymeric implants on soft tissue reactions: An in vivo study in rats. Journal of Biomedical Materials Research 84A, 652-660, doi:10.1002/jbm.a.31389 (2008).
[14] Kim, H.-M., Miyaji, F., Kokubo, T. & Nakamura, T. Preparation of bioactive Ti and its alloys via simple chemical surface treatment. Journal of Biomedical Materials Research 32, 409-417 (1996).
[15] Lee, T. M., Chang, E. & Yang, C. Y. A comparison of the surface characteristics and ion release of Ti6Al4V and heat-treated Ti6Al4V. Journal of Biomedical Materials Research 50, 499-511 (2000).
[16] Perla, V. & Webster, T. J. Better osteoblast adhesion on nanoparticulate selenium - A promising orthopedic implant material. Journal of Biomedical Materials Research 75A, 356-364 (2005).
[17] Lawrence J,*, HaoL., Chew H.R. , Surface & Coatings Technology 5581-5589 (2006)
[18] Wang, C. C., Hsu, Y. C., Su, F. C., Lu, S. C. & Lee, T. M. Effects of passivation treatments on titanium alloy with nanometric scale roughness and induced changes in fibroblast initial adhesion evaluated by a cytodetacher. Journal of Biomedical Materials Research 88A, 370-383, doi:10.1002/jbm.a.31604 (2009).
[19] Brunette D.M., Materials in Science, 2001.
[20] Chu, P.K., Chen, J.Y., Wang, L.P., Huang, N. Plasma-surface modification of
biomaterials. Materials Science and Engineering R36,143-206 (2002)..
[21] 何擇榮、黃立忠、葉泰榮、朱裕華等人,2005植體系統新增版 Overview of
Dental Implant Systems 2005,台北市牙科植體學學會,民國94年
[22] 國立成功大學,碩士論文:鈦合金奈級表面粗糙差異對錶面性質及細胞初期生
長的影響,製造工程研究所,謝明哲
[23] 國立成功大學,博士論文:奈米級表面粗糙度之生醫級鈦合金材料應用
於骨母細胞與纖維母細胞反應性研究,製造工程研究所,許育晟。
[24] Johansson, C. B., Chong H.H., Wennerberg A., Albrektsson, T. A Quantitative Comparison of Machined Commercially Pure Titanium and Titanium-Aluminum-Vanadium Implants in Rabbit Bone. The International Journal of Oral & Maxillofacial Implants 13, 315-321( 1998).
[25] Sinha R.K., Morris F, Shah S.A., Tuan R.S. Surface composition of orthopaedic implant metals regulates cell attachment, spreading, and cytoskeletal organization of primary human osteoblasts in vitro. Clin Orthop 305:258–272(1994).
[26] Vogler E.A., Bussian R.W. Short-term cell-attachment rates: A surface-sensitive test of cell–substrate compatibility. J Biomed Mater Res 21:1197–1211(1987).
[27] Kim H.M., Miyaji F, Kokubo T., Nakamura T. Preparation of bioactive Ti and its alloys via simple chemical surface treatment. J Biomed Mater Res 32:409–417.1996.
[28] Schwartz Z., Martin J.Y., Dean D.D., Simpson J., Cochran D.L., Boyan B.D. Effect of titanium surface roughness on chondrocyte proliferation, matrix production, and differentiation depends on the state of cell maturation. J Biomed Mater Res 30, 145–155(1996).
[29] Jayaraman M., Meyer U., Buhner M., Joos U., Wiesmann H.P. Influence of
titanium Surfaces on attachment of osteoblast-like cells in vitro.
Biomaterials 25, 625–631 (2004).