簡易檢索 / 詳目顯示

研究生: 張洪維
Chang, Hung-Wei
論文名稱: 壓力驅動流動電流於氧化石墨烯奈米通道之研究
Investigation of Pressure-Driven Streaming Current in Graphene Oxide Nanochannels
指導教授: 楊瑞珍
Yang, Ruey-Jen
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 65
中文關鍵詞: 氧化石墨烯奈米通道流動電流
外文關鍵詞: Graphene Oxide, Nanochannel, Streaming current
相關次數: 點閱:64下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在以往的文獻資料中,用來探討流動電流的實驗,其奈米通道都是由光電蝕刻的方式,在晶圓上製作出單一的奈米通道,在這個通道的兩端設置壓力差來產生流動電流。相對於利用晶圓製作出來的奈米通道,二維材料製作的奈米通道不僅製程簡單且成本低,由於同時可製成許多奈米通道,其量測得到的電流也較大,因為奈米通道高度大約只有1奈米,薄膜的離子選擇性也高。因此本研究目的是要探討氧化石墨烯二維材料製成奈米通道薄膜,來探討離子水溶液在其通道內的傳輸現象。首先利用非破壞性檢測,了解氧化石墨烯的官能基組成及其層狀結構,討論其與其他材料(環氧樹脂)鍵結的能力,製作出量測裝置再加以探討。由本次得到的實驗值可以了解奈米流體力學的表現,不同於以往的部分文獻認為奈米通道內的流體皆為無滑移條件,由實驗與理論的數據相比較,可以瞭解在不同濃度之下,有無滑移條件下的流動電流差異,且利用這種自組裝二維材料的技術建構奈米通道,能以簡單的製程建構出數以萬計的奈米通道,例如本研究的薄膜為20微米,其內部具有約25000層的通道,其壓力產生的流動電流遠比單一通道產生的流動電流大。透過本研究,可以更加瞭解離子在奈米通道內的傳輸行為,並於最後章節闡述未來對其他二維材料例如二硫化鉬和氮化硼的研究方向。

    This study is to investigate the transmission of graphene oxide two-dimensional materials into nanochannels films to investigate the transport of ionic aqueous solutions. Experiments can be used to understand the performance of nanofluidics. Unlike some previous literatures, the fluids in the nanochannels are all non-slip conditions. Compared with the theoretical data, we can be understood that under different concentrations. With or without the difference in streaming current under slip conditions, and using this self-assembled two-dimensional material technology to construct the nanochannels, tens of thousands of nanochannels can be constructed in a simple process. In this study, a two-dimensional material self-assembly of graphene oxide was used to construct a nanochannels film with a thickness of about 20 micrometers and a number of about 25,000 nanochannels inside. The streaming current generated by the pressure is much bigger than that of a single nanochannel on wafer. From the experimental results, the streaming current generated by the two are more than 1000 times different, and the slip condition effect in the nanochannels is discussed by comparing the magnitude of the streaming current with the theoretical simulation value.

    中文摘要 I 內容目錄 XI 圖目錄 XIII 表目錄 XVII 縮寫說明 XVIII 第一章 緒論 1 1.1 簡介 1 1.2 氧化石墨烯 3 1.3 文獻介紹 5 1.4 研究動機與目的 11 1.5 論文架構 12 第二章 原理 13 2.1 電雙層效應 13 2.2 流動電流 15 第三章 實驗材料與方法 18 3.1 實驗儀器介紹 18 3.2 薄膜製作 28 3.3 材料分析 31 3.4 電流量測 33 第四章 結果與討論 40 4.1 氧化石墨烯薄膜鑑定分析 40 4.2 氯化鉀水溶液於氧化石墨烯奈米通道之電性及流動電流量測 47 第五章 結論與展望 62 參考文獻 63

    1. Novoselov, K.S., A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, and A.A. Firsov, Electric field effect in atomically thin carbon films. Science. 306(5696): p. 666-669. (2004)
    2. Kotekar-Patil, D., J. Deng, S.L. Wong, C.S. Lau, and K.E.J. Goh, Single layer MoS2 nanoribbon field effect transistor. Applied Physics Letters. 114(1): p. 5. (2019)
    3. Schoch, R.B., J. Han, and P. Renaud, Transport phenomena in nanofluidics. Reviews of Modern Physics. 80(3): p. 839-883. (2008)
    4. Cheng, X.Q., Z.X. Wang, X. Jiang, T.X. Li, C.H. Lau, Z.H. Guo, J. Ma, and L. Shao, Towards sustainable ultrafast molecular-separation membranes: From conventional polymers to emerging materials. Progress in Materials Science. 92: p. 258-283. (2018)
    5. Feng, J., K. Liu, M. Graf, M. Lihter, R.D. Bulushev, D. Dumcenco, D.T.L. Alexander, D. Krasnozhon, T. Vuletic, A. Kis, and A. Radenovic, Electrochemical Reaction in Single Layer MoS2: Nanopores Opened Atom by Atom. Nano Letters. 15(5): p. 3431-3438. (2015)
    6. Cohen-Tanugi, D. and J.C. Grossman, Water Desalination across Nanoporous Graphene. Nano Letters. 12(7): p. 3602-3608. (2012)
    7. Nair, R.R., H.A. Wu, P.N. Jayaram, I.V. Grigorieva, and A.K. Geim, Unimpeded Permeation of Water Through Helium-Leak-Tight Graphene-Based Membranes. Science. 335(6067): p. 442-444. (2012)
    8. Abraham, J., K.S. Vasu, C.D. Williams, K. Gopinadhan, Y. Su, C.T. Cherian, J. Dix, E. Prestat, S.J. Haigh, I.V. Grigorieva, P. Carbone, A.K. Geim, and R.R. Nair, Tunable sieving of ions using graphene oxide membranes. Nat Nanotechnol. 12(6): p. 546-550. (2017)
    9. Kim, S., J. Nham, Y.S. Jeong, C.S. Lee, S.H. Ha, H.B. Park, and Y.J. Lee, Biomimetic Selective Ion Transport through Graphene Oxide Membranes Functionalized with Ion Recognizing Peptides. Chemistry of Materials. 27(4): p. 1255-1261. (2015)
    10. Sun, P.Z., H. Liu, K.L. Wang, M.L. Zhong, D.H. Wu, and H.W. Zhu, Ultrafast liquid water transport through graphene-based nanochannels measured by isotope labelling. Chemical Communications. 51(15): p. 3251-3254. (2015)
    11. Duan, C. and A. Majumdar, Anomalous ion transport in 2-nm hydrophilic nanochannels. Nat Nanotechnol. 5(12): p. 848-52. (2010)
    12. Zaaba, N.I., K.L. Foo, U. Hashim, S.J. Tan, W.-W. Liu, and C.H. Voon, Synthesis of Graphene Oxide using Modified Hummers Method: Solvent Influence. Procedia Engineering. 184: p. 469-477. (2017)
    13. Krishnamoorthy, K., M. Veerapandian, K. Yun, and S.J. Kim, The chemical and structural analysis of graphene oxide with different degrees of oxidation. Carbon. 53: p. 38-49. (2013)
    14. Li, Y., W. Gao, L. Ci, C. Wang, and P.M. Ajayan, Catalytic performance of Pt nanoparticles on reduced graphene oxide for methanol electro-oxidation. Carbon. 48(4): p. 1124-1130. (2010)
    15. Stobinski, L., B. Lesiak, A. Malolepszy, M. Mazurkiewicz, B. Mierzwa, J. Zemek, P. Jiricek, and I. Bieloshapka, Graphene oxide and reduced graphene oxide studied by the XRD, TEM and electron spectroscopy methods. Journal of Electron Spectroscopy and Related Phenomena. 195: p. 145-154. (2014)
    16. Qu, J.Y., F. Gao, Q. Zhou, Z.Y. Wang, H. Hu, B.B. Li, W.B. Wan, X.Z. Wang, and J.S. Qiu, Highly atom-economic synthesis of graphene/Mn3O4 hybrid composites for electrochemical supercapacitors. Nanoscale. 5(7): p. 2999-3005. (2013)
    17. Konkena, B. and S. Vasudevan, Understanding Aqueous Dispersibility of Graphene Oxide and Reduced Graphene Oxide through pKa Measurements. J Phys Chem Lett. 3(7): p. 867-72. (2012)
    18. Han, Y., Z. Xu, and C. Gao, Ultrathin Graphene Nanofiltration Membrane for Water Purification. Advanced Functional Materials. 23(29): p. 3693-3700. (2013)
    19. Tsou, C.-H., Q.-F. An, S.-C. Lo, M. De Guzman, W.-S. Hung, C.-C. Hu, K.-R. Lee, and J.-Y. Lai, Effect of microstructure of graphene oxide fabricated through different self-assembly techniques on 1-butanol dehydration. Journal of Membrane Science. 477: p. 93-100. (2015)
    20. Esfandiar, A., B. Radha, F.C. Wang, Q. Yang, S. Hu, S. Garaj, R.R. Nair, A.K. Geim, and K. Gopinadhan, Size effect In Ion transport through angstrom-scale silts. Science. 358(6362): p. 511-513. (2017)
    21. van der Heyden, F.H., D. Stein, and C. Dekker, Streaming currents in a single nanofluidic channel. Phys Rev Lett. 95(11): p. 116104. (2005)
    22. Chang, C.-C., R.-J. Yang, M. Wang, J.-J. Miau, and V. Lebiga, Liquid flow retardation in nanospaces due to electroviscosity: Electrical double layer overlap, hydrodynamic slippage, and ambient atmospheric CO2 dissolution. Physics of Fluids. 24(7). (2012)
    23. Raidongia, K. and J. Huang, Nanofluidic ion transport through reconstructed layered materials. J Am Chem Soc. 134(40): p. 16528-31. (2012)

    無法下載圖示 校內:2024-08-12公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE