| 研究生: |
劉詩潔 Liu, Shih-Chieh |
|---|---|
| 論文名稱: |
融鹽EMICl/AlCl3、EMIBF4於乙、二氯甲烷與苯 中導電性之分子模擬 Molecular Simulations of the Conductivities for Molten Salts EMICl/AlCl3、EMIBF4 in Acetonitrile、 Dichloromethane and Benzene |
| 指導教授: |
施良垣
Shy, Liang-Yuan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系碩士在職專班 Department of Chemistry (on the job class) |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 101 |
| 中文關鍵詞: | 比導電度 、擴散係數 、EMIBF4 、EMICl 、融鹽 、分子模擬 |
| 外文關鍵詞: | EMICl, molten salt, EMIBF4, specific conductivity, molecular simulation, diffusion coefficients |
| 相關次數: | 點閱:144 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇參考Hussey之實驗參數,以分子動力模擬的方法研究溶劑之種類(乙、苯、二氯甲烷)及其添加量(0、20、30、50 wt %)對於融鹽EMICl/EMIAlCl4導電性之影響,並與實驗值比較。此外,也探討濃度為2M時,三種融鹽(EMIBF4、EMICl/EMIAlCl4、EMITFSI)分別與乙混合後導電性之差異。
模擬結果顯示,隨著乙含量的增加,EMICl/EMIAlCl4之陰、陽離子的擴散係數、比導電度與自由離子機率也隨之增加,這是因為越多乙分子進入EMI+之第一配位殼層,抑制陰、陽離子之結合。EMI+周圍之AlCl4-配位數隨著乙含量之增加而遞減,其值介於4至9。當溶劑更換為二氯甲烷與苯時,陰、陽離子的擴散係數與比導電度均下降,其中以溶劑為苯時最低。自由離子生成之機率以溶劑為苯時最高,乙最低,這是因為苯的體積最大,使得陰、陽離子不易結合。EMI+周圍之AlCl4-配位數隨著溶劑體積的增加而減少,約為6至8個。
在2M乙溶劑中,若改變融鹽種類時,陰、陽離子之擴散係數與比導電度的相對大小為EMIBF4>EMICl/EMIAlCl4>EMITFSI,但自由離子生成機率並沒有明顯差異。
Molecular dynamics simulation method, based on the experimental parameters of Hussey, has been used to study the influence of solvent (acetonitrile, benzene and dichloromethane) and it’s amount (0,20,30,50 wt %) on the ionic conductivities for molten salt 1-methyl-3-ethylimidazolium chloride
(EMICl)/EMIAlCl4, and compare with experiment. Moreover, the difference in conductivity for mixture of CH3CN with three types of salt (EMIBF4, EMICl/EMIAlCl4, EMITFSI) at a concentration of 2.0M was also discussed.
The result shows that the diffusion coefficients of cation and anion of EMICl/EMIAlCl4 system, the specific conductivity and the free ion probability increase with the content of CH3CN. This is ascribe to the intervention of more CH3CN molecules into the first coordination sphere of EMI+ ion, which suppress the association of ions. The number of coordinating AlCl4- ions around EMI+ decreases with the increase of acetonitrile amount, with a value between 4 and 9. As the solvent is replaced by dichloromethane and benzene, both the diffusion coefficients and conductivity decrease. Among them, benzene gives the lowest values. The highest free ion probability is obtained as benzene is the solvent, but the lowest for acetonitrile. The reason lies on the bulkiness of benzene, whose intervention between EMI+ and AlCl4- making them more difficult to associate. The number of coordinating AlCl4- ions around EMI+ decreases with the size of solvent, with a value between 6 and 8.
At 2M acetonitrile, the diffusion coefficients and the specific conductivity have the order: EMIBF4>EMICl/EMIAlCl4>EMITFSI, but the fraction of free ions is nearly the same.
1. Holbrey, J. D.; Seddon, K. R. Clean Products and Processes, 1999, 1, 223-236.
2. Fannin, A. A., Jr.; Floreani, D. A.; King, L. A.; Landers, J. S.; Piersma, B. J.; Stech, D. J.; Vaughn, R. L.; Wilkes, J. S.; Williams, J. L., J. Phys. Chem., 1984, 88, 2614-2621.
3. Walden, P. Bull. Acad. Imper. Sci. (St. Petersburg), 1914, 1800-1808.
4. Hagiwarw, R.; Ito, Y. J. Fluorine Chem., 2000, 105, 221-227.
5. Seddon, K. R. J. Chem. Tech. Biotechnol., 1997,68,351-356.
6. Hurley, F. H.; Wier, T. P. J. Electrochem. Soc., 1951, 98, 203-206.
7. Wilkes, J. S.; Levisky, J. A.; Wilson, R. A.; Hussey, C. L. Inorg. Chem., 1982, 21, 1263-1264.
8. Tait, S.; Osteryoung, R. A. Inorg. Chem., 1984, 23, 4352-4360.
9. Hesse, M.; Meier, H.; Zeeh, B. “Spektroskopische Methoden in der organischen Chemie”, 2nd ed., 1984.
10. Fannin, A. A., Jr.; King, L. A.; Levisky, J. A.; Wilkes, J. S. J. Phys. Chem., 1984, 88, 2609-2614.
11. Dieter, K. M.; Dymek, C. J., Jr.; Heimer, N. E.; Rovang, J. W.; Wilkes, J. S. J. Am. Chem. Soc., 1988, 110, 2722-2726.
12. Moy, R.; Emmenegger, F. P. Electrochim. Acta, 1992, 37, 1061-1068.
13. Perry, R. L.; Jones, K. M.; Scott, W. D.; Liao, Q.; Hussey, C. L. J. Chem. Eng. Data, 1995, 40, 615-619.
14. Liao, Q; Hussey, C. L. J. Chem. Eng. Data, 1996, 41, 1126-1130.
15. Cooper, E. I.; O’Sullivan, E. J. M., in “Proceedings of the eighth International Symposium of Molten Salts, Physical and High Temperature Materials Division Proceedings”, NJ, 1992, No. 92-16, 386-396.
16. Fuller, J.; Carlin, R. T.; Osteryoung, R. A. J. Electrochem. Soc., 1997, 144, 3881-2885.
17. Huang, J. F.; Chen, P. Y.; Sun, I. W. Inorg. Chim. Acta, 2001, 320, 7-11.
18. Andrade, J.; Bes, E. S.; Stassen, H. J. Phys. Chem. B, 2002, 106, 13344-13351.
19. 范俊威, 國立成功大學化學研究所碩士論文, 2002.
20. 王鴻益, 國立成功大學化學研究所碩士論文, 2003.
21. 洪紹琪, 國立成功大學化學研究所碩士論文, 2004.
22. 王韋翔, 國立成功大學化學研究所碩士論文, 2004.
23. “Discover User Guide”, version 4.0. San Diego: Biosym Technologies, 1996.
24. Theodoroa, D. N.; Suter, U. W. Macromolecules, 1985, 18, 1206-1214.
25. Bsskir, J. N.; Suter, U. W. Macromolecules, 1988, 21, 1877-1878.
26. Iglesias, T. P.; Fernndez, J. P. J. Chem. Thermodynamics, 2001, 33, 1375-1381.
27. “Aldrich Handbook of Fine Chemicals and Laboratory Equipment”, Sigma-Aldrich, 2003-2004.
28. Ratner, M. “Polymer electrolyte Reviews 1”, Elserier Applied Science, London and New York, 1987, pp.173-236.
29. Fricke, H. J. Phys. Chem., 1953, 57, 934-937.
30. Zimm, B. H.; Lundberg, J. L. J. Phys. Chem., 1956, 60, 425-428.
31. Lundberg, J. L. J. Macromol. Sci., 1969, B3, 693.
32. Carlin, R. T.; Osteryoung, R. A. J. Electroanal. Chem., 1988, 252, 81-89.
33. Piersma, B. J.; Carper, W. R. J. Phys. Chem., 1995, 99, 12409-12412.
34. Nishida, T.; Tashiro, Y.; Yamamoto, M. J. Fluorine Chem., 2003, 120, 135-141.
35. Vieira, L. G.; Hernandez, O.; Almeida, A.; Quilichini, M.; Ribeiro, J. L.; Chaves, M. R.; Klpperpieper, A. Eur. Phys. J. B, 1999, 10, 447-456.
36. Hofstetter, C.; Pochasky, T. C. Magn. Reson. Chem., 2000, 38, 90-94.
37. Marcus, Y.; Jenkins, H. D. B.; Glasser, L. J. Chem. Soc., Dalton Trans., 2002, 3795-3798.