| 研究生: |
賴金鑫 Lai, Chin-Hsin |
|---|---|
| 論文名稱: |
形狀記憶合金加勁複合層板之顫振分析 Flutter Analysis of Shape Memory Alloy Reinforced Composite Laminate |
| 指導教授: |
蕭樂群
Shiau, Le-Chung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 69 |
| 中文關鍵詞: | 形狀記憶合金 、複合層板 、顫振 、有限元素法 |
| 外文關鍵詞: | Shape memory alloy, composite laminate, flutter, Finite Element method |
| 相關次數: | 點閱:133 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文以有限元素法探討含有形狀記憶合金(SMA)之方形複合材料層板中形狀記憶合金特性對複合材料層板受氣動力後顫振行為的影響。文中探討形狀記憶合金纖維以不同體積含量及預應變埋入層板中,並考慮複合材料層板疊層方向及形狀記憶合金纖維分佈情況,觀察整體系統顫振行為的變化。結果顯示形狀記憶合金纖維體積含量越多及預應變越大,產生回復應力越大,在完全逆變態的情況下,使得顫振邊界有效提升。而形狀記憶合金纖維越集中於承受高彎曲作用之層板中心處,亦可有效提升顫振邊界。通常臨界動壓力值出現在複合材料層板之第一(1,1)與第二(2,1)模態重合時,但複合材料層板因纖維排列方向及形狀記憶合金特性之影響,使得臨界動壓力會在不同情況下由不同模態合併產生。
The effects of shape memory alloy (SMA) on the linear flutter behavior of square composite laminate plates was investigated by Finite Element Method. The effects of different spacing arrangement of the SMA and prestrain in the SMA on the flutter boundary of the laminate were studied in detail. Results show that with higher initial strain and volume fraction of the SMA will increase the stability boundaries of the laminate. Also, when the SMA fibers are concentrated in the central area of the plate, the stability boundaries will be increased. Because of composite laminate fiber spacing and SMA characteristics, the coalescence pair to yield flutter may between higher modes.
[1] Dowell, E. H., “Panel Flutter : A Review of the Aeroelastic Stability of Plates and Shells,” AIAA Journal, Vol. 8, No. 3, pp. 385-399, 1970.
[2] Calligeros, J. M. and Dugundji, J., “Effects of Orthotropicity Orientation on Supersonic Panel Flutter,” AIAA Journal, Vol. 1, No. 9, pp.2180-2182, 1963.
[3] Schaeffer, H. G. and Heard, W. L., “Flutter of a Flat Panel Subjects to a Nonlinear Temperature Distribution,” AIAA Journal, Vol. 3, No. 10, pp. 1918-1923, 1965.
[4] Ketter, D. J., “Flutter of Flat, Rectangular, Orthotropic Panel,” AIAA Journal, Vol. 5, No. 12, pp. 2267-2270,1967.
[5] Olson, M. D., “Finite Elements Applied to Panel Flutter,” AIAA Journal, Vol. 5, No. 5, No.12, pp. 2267-2270, 1967.
[6] Appa, V. K. and Somashekar, B. R., “Application of the Matrix Displacement Methods in the Study of Panel Flutter,” AIAA Journal Vol. 7, No. 1, pp. 50-53, 1969.
[7] Rossettos, J. N. and Tong, P., “Finite Element Analysis of Vibration and Flutter of Cantilever Anisotropic Plates,” Journal of Applied Mechanics, ASME, Vol. 41, No. 4, pp. 1075-1080, 1974.
[8] Ramkumar, R. L. and Weisshaar, T. A., “Flutter of Flat Rectangular Anisotropic Plates in High Mach Number Supersonic Flow,” Journal of Sound and Vibration, Vol. 50, No. 4, pp. 587-597, 1977.
[9] Han, A. D. and Yang, T. Y., “Nonlinear Panel Flutter Using High-Order Triangular Finite Elements,” AIAA Journal, Vol. 21, No. 10, pp. 1453-1461, 1983.
[10] Shiau, L. C., Tsai, D. H. and Lee, L. J. “Flutter of Composite Laminated Panel,” Trans. of AASRC, pp. 135-145, December, 1988.
[11] Shiau, L. C. and Wu, T. Y., “ Application of the Finite Element Method to Postbuckling Analysis of Laminated Plates,” AIAA Journal, Vol. 33, No. 12, December 1995.
[12] Shiau, L. C. and Kuo, S. Y., “Thermal Posbuckling Behavior of Composite Sandwich Plates,” Journal of Engineering Mechanics, Vol. 130, No.10, October 2004.
[13] Singha, Maloy. K., Ganapathi M., “A Parametric Study on Supersonic Flutter Behavior of Laminated Composite Skew Flat Panels,” composite structures, Vol. 69, pp. 55-63, 2005.
[14] Shiau, L. C. and Kuo, S. Y., “Free Vibration of Thermally Buckled Composite Sandwich Plates,” Journal of Vibration and Acoustics, Vol. 128, Issue 1, February 2006.
[15] Rogers, C. A., Liang, C. and Baker, D. K., “Dynamic Control Concepts Using Shape Memory Alloy Reinforced Plates,” Smart Materials, Structures and Mathematical Issue, Technomic, Lancaster, PA., 1989.
[16] Baz, A., Iman, K. and McCoy, J., “Active Vibration Control of Flexible Beams Using Shape Actuators,” Journal of Sound and Vibration, Vol. 140, No.3, pp. 437-456, 1990.
[17] Baz, A., Poh, S., Ro, J. and Gilheany, J., “Control of the Natural Frequencies of Nitinol-Reinforced Composite Beams,” Journal of Sound and Vibration, Vol. 185, No. 1 ,pp. 171-185, 1995.
[18] Rogers, C. A., Liang, C. and Jia, J., “Structural Modification of Simply-Supported Laminated Plate Using Embedded Shape Memory Alloy Fibers,” Computer & Structures Vol. 38, No. 5/6, pp. 569-580, 1991.
[19] Thompson, S. P. and Loughlan, J., “Adaptive Post-Buckling Response of Carbon Fiber Composite Plates Employing SMA Actuators,” Composite Structures, Vol. 38, pp. 667-678, 1997.
[20] Duan, B., Tawfik, M., Goek, S. N., Ro, J. J. and Mei, C., “Analysis and Control of Large Thermal Deflection of Composite Plates Using Shape Memory Alloy,” In Smart Structures and Material 2000, Proceedings of SPIE, Vol. 3991, 2000.
[21] Ostachowicz, W. M., Cartmell, M. P. and Zak, A. J., “Statics and Dynamics of Composite Structures With Embedded Shape Memory Alloys,” Structures Control and Heatlth Monitoring, SMART 2001, Warsaw, pp. 22-25, May 2001.
[22] Park, J. S., Kim, J. H. and Moon, S. H., “Vibration of Thermally Post-buckled Composite Plates Embedded With Shape Memory Alloy Fibers,” Composites Structures 63, pp. 179-188, 2004.
[23] Park, J. S., Kim, J. H. and Moon, S. H., “Thermal Post-buckled and Flutter Characteristics of Composites Plates Embedded with Shape Memory Alloy Fibers,” Composites: Part B, 36, pp. 627-636, 2005.
[24] Ibrahim, H. H., Tawfik, M. and Negm, H. M., “Thermal Post-buckling and Flutter Behavior of Shape Memory Alloy Hybrid Composite Plates,” Proceedings of the Eighth International Congress of Fluid Dynamics and Propulsion (ICFDP8), Sharm El-Shiekh, Egypt, American Society of Mechanical Engineers Paper ICFDP-EG-153, December 2006.
[25] Oh, I. K. and Kim, D. H., “Vibration Characteristics and Supersonic Flutter of Cylindrical Composite Panels with Large Thermoelastic Deflection,” composite structures 90, pp. 208-216, 2009.
[26] Ibrahim, H. H., Yoo, H. H. and Lee, K. S., “Aero-thermo-mechanic Characteristics of Imperfect Shape Memory Alloy Hybrid Composite Panels,” Journal of Sound and Vibration 325, pp. 583-596, 2009.
[27] Leissa, A. W. and Martin, A. F., “Vibration and Buckling of Rectangular Composite Plates with Variable Fiber Spacing,” Composite Structures, 14, pp. 339-357, 1990.
[28] Yang, T. Y., “Finite Element Structures Analysis,” Prentice-Hall, Inc., 1986.
[29] Cross, W. B., Kariotis, A. H. and Stimler F. J., “Nitional Characterization Study,” CR-1433, Hampton, VA: NASA, 1979.
[30] Gibson, R. F., “Principle of Composite Material Mechanics,” McGraw-Hill, 1994.
[31] Kuo, S. Y., “Aerothermoelastic Analysis of Composite Sandwich Plates,” Ph.D. Thesis, IAA, NCKU, 2002.
[32] 劉顏賓, “熱挫屈複合層板之顫振分析,” 國立成功大學航空太空工程研究所碩士論文, 2005。
[33] 張書瑜, “形狀記憶合金加勁複合材料層板之後挫屈及自由振動分析,” 國立成功大學航空太空工程研究所碩士論文, 2009。