簡易檢索 / 詳目顯示

研究生: 王克鈞
Wang, Ker-Jiun
論文名稱: 帶驅動式機械手指插梢操作之結合視覺與力覺之阻抗控制
Impedance-Based Combination of Visual and Force Control for a Tendon-Driven Robot Hand Performing Peg-in-Hole Assembly
指導教授: 蔡清元
Tsay, Tsing-Iuan
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 英文
論文頁數: 130
中文關鍵詞: 自動化的機械手順應性阻抗控制機器視覺插銷作業
外文關鍵詞: peg-in-hole assembly, machine vision, visual impedance, compliance transformation, dexterous robot hand manipulation, fuzzy sliding mode control, impedance control
相關次數: 點閱:174下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   近年來,如何利用自動化的機械手來操縱物體 並完成我們所需要的任務受到很大的矚目。因為當前的機器人缺乏像人類一般的彈性和智慧去應付各種臨場狀況的改變,相關領域的研究人員一直想要在這方面賦予機械手更多的自主性,尤其在插銷操作方面,被操縱的物體必須擁有相當的順應性來減少物體與環境之間的碰撞,如何利用機械手實現物體的順應性插銷作業是一個非常有趣的問題,它需要整合各方面的研究領域,包括機器視覺、影像處理、力覺回饋,以及擬定適當的自動化操作策略,來實現其順應性。
      在本篇論文的研究當中,發展了結合視覺與力覺的自動化插銷操作策略,利用視覺與力覺的資訊不只被用來擬定抓取與操作的方式,同時可加強物體的順應性控制。本實驗的研究平台為一個五個自由度的鋼索驅動式機械手指,為了控制物體的順應性,建立了在手指關節空間中的模糊滑動阻抗控制器,也充分提出了相關的滾動接觸操作模式及物體與關節角之間的順應轉換關係來完成我們所需要的自動化任務。

     Autonomous manipulation has attracted signi-ficant interest recently. Since the current robot manipulation systems lack human flexibility and intelligence, researchers in this field want to impart more autonomous characteristics to the ro-bot hand. During peg-in-hole assembly, the mani-pulated object must have appropriate comp-liance characteristics to reduce the interaction force between the object and the environment. Realizing object compliance with a multi-fingered hand and autonomous manipulation for the peg-in-hole task is an interesting field of study, which inte-grates many technologies, including machine vi-sion, image processing, visual-force integration, manipulation skill development and compliance characteristic realizations.
     This study develops autonomous manipulation peg-in-hole assembly techniques combining visual and force sensing. The vision and force infor-mation are integrated not only to ensure auto-nomous grasp and manipulation synthesis, but also to reinforce compliance control of the object. The 5-dof tendon-driven robot hand developed in our laboratory is used as a test bed for the ex-periments. To control the object compliance, a novel fuzzy sliding mode impedance controller in the finger joint space is constructed, and se-veral related issues about rolling contact mani-pulation and the compliance transformation from the object to the finger joints are derived. Fi-nally, we expect that this work will establish a new basis for future study of autonomous com-pliant object manipulation.

    Abstract (in Chinese)................i Abstract (in English)................iii Acknowledgement......................v Table of Contents....................vii List of Figures......................xi List of Tables.......................xv Chapter 1 Introduction 1 1.1 Background 1 1.2 Motivation and Objectives 2 1.3 Overview of Related Works 3 1.3.1 Multi-Fingered Tendon-Driven Robot Hand 3 1.3.2 Dexterous Manipulation 4 1.3.3 Sensors Integration 4 1.3.4 Compliance Analysis and Impedance Control 5 1.4 Main Contributions 6 1.5 Thesis Organization 7 Chapter 2 Manipulation 11 2.1 Introduction 11 2.2 Issues in Dexterous manipulation 13 2.2.1 Kinematics 13 2.2.2 Manipulability, Force Closure and Stability 15 2.2.3 Grasp and Motion Planning 17 2.3 Basic Assumptions 17 2.3.1 Quasi-static Manipulation 19 2.3.2 Point Rolling Contact with Friction 20 2.4 Developed Rolling Contact Manipulation System 20 2.4.1 Equation Formulation 21 2.4.2 Iteration of Inverse Kinematics 25 2.4.3 Jacobian Relationships 27 2.5 Summary 31 Chapter 3 Compliance 35 3.1 Introduction 35 3.2 Compliant Peg-in-Hole Task 37 3.2.1 Wedging and Jamming 37 3.2.2 Center of Compliance 38 3.3 Compliance Transformation 40 3.4 Compliance Analysis and Tuning 43 3.5 Summary 45 Chapter 4 Vision 55 4.1 Introduction 55 4.2 Visually Guided Object Grasping and Insertion 57 4.3 Camera Model 58 4.4 Image Processing 60 4.5 Visual Impedance 62 4.6 Summary 64 Chapter 5 Control 71 5.1 Introduction 71 5.2 Designing the Impedance Parameters 73 5.3 Fuzzy Sliding Mode Joint Impedance Control (FSMJIC) 75 5.3.1 Sliding Surface and Sliding Condition 76 5.3.2 Approaches to the Derivation of the Control Law 79 5.3.3 Implementation of the Fuzzy Logic Controller 83 5.4 Tendon Tension Control 86 5.5 Summary 87 Chapter 6 Methodology 93 6.1 Introduction 93 6.2 Approaching Stage 94 6.2.1 Graspable Object Region Analysis 94 6.2.2 Grasp Points Determination 94 6.2.3 Grasp Angles Determination 95 6.3 Manipulation Stage 96 6.3.1 Path Planning 96 6.3.2 Constraints Check and Finger Relocation 97 6.3.3 Slippage Check and Finger Adaptation 97 6.4 Summary 98 Chapter 7 Experimentation 103 7.1 Experimental Setup 103 7.2 FSMJIC Performance Test 104 7.3 Peg-in-Hole Assembly 105 7.3.1 Approaching Stage Experiments 105 7.3.2 Manipulation Stage Experiments 106 Chapter 8 Conclusion 121 8.1 Summary 121 8.2 Future Improvements 123 Reference 125 Autobiography

    [1] Aristotle, “De partibus animalium,” IV. 10; 687a 7, ca. 340 BC.
    [2] H. Asada and J. -J. E. Slotine, “Robot analysis and control,” a Wiley Interscience Publication, John Wiley and Sons, Inc., New York / Chester / Brisbane / Toronto / Singapore.
    [3] A. Bicchi, “Hands for dexterous manipulation and powerful grasping: a difficult road towards simplicity,” in Robotics Research: the 7th international symposium, edited by G. Giralt. and G. Hirzinger, Springer, 1996.
    [4] A. Bicchi and V. Kumar, “Robotic grasping and contact: a review,” in Proc. of IEEE Int. Conf. on Robotics and Automation, pp. 348-353, 2000, San Francisco, CA.
    [5] A. Castano and S. Hutchinson, “Visual compliance: Task-directed visual servo control,” IEEE Trans. on Robotics and Automation, 10(3):334-342, June 1994.
    [6] M. R. Cutkosky and I. Kao, “Computing and controlling the compliance of a robotic hand,” IEEE Trans. on Robotics and Automation, 5(2):151–165, Apr. 1989.
    [7] R. C. Goertz, “Manipulators used for handling radioactive materials,” in Human Factors in Technology, Chap. 27, edited by E. M. Bennett, McGraw-Hill, 1963.
    [8] D. Gomez, G. Burdea and N. Langrana, “Integration of the Rutgers Master II in a virtual reality simulation,” in Proc. of Virtual Reality Annual Int. Symposium, pp. 198-202, 1995.
    [9] D. L. Hall, “Mathematical techniques in multi-sensor data fusion,” Artech House, 1992, Boston.
    [10] J. Hill and W. T. Park, “Real time control of a robot with a mobile camera,” in Proc. of the 9th ISIR, pp. 233-246, March 1979, Washington, DC.
    [11] N. Hogan, “Impedance control: an approach to manipulation: part I – theory; part II – implementation; part III – applications,” J. of Dynamic Systems, Measurement and Control, Transactions ASME, 107(1):1-24, 1985.
    [12] N. Hogan, “Stable execution of contact tasks using impedance control,” in Proc. of IEEE Int. Conf. on Robotics and Automation, pp. 595-601, March 1987, Raleigh NC.
    [13] N. Hollinghurst and R. Cipolla, “Uncalibrated stereo hand-eye coordination,” Tech. Rep. CUED/FINFENG/TR126, Department of Engineering, University of Cambridge, 1993.
    [14] N. Houshangi, “Control of a robot manipulator to grasp a moving target using vision,” in Proc. of IEEE Int. Conf. on Robotics and Automation, pp. 604-609, May 1990, Cincinnati.
    [15] M. C. Huang, “Control of dexterous manipulation using a tendon-driven robot hand,” Master Thesis, Department of Mechanical Engineering, National Cheng Kung University, R. O. C., 1999.
    [16] S. Hutchinson, G. D. Hager and P. I. Corke, “A tutorial on visual servo control,” IEEE Trans. on Robotics and Automation, 12(5):651-670, 1996.
    [17] S. Jacobsen, J. Wood, K. Bigger and E. Iverson,“ The Utah/MIT hand: works in progress,” Int. J. of Robotics Research, 4(3):221-250, 1986.
    [18] S. L. Jiang, K. K Choi and Z. X. Li, “Coordinated motion generation for multifingered manipulation using tactile feedback,” in Proc. of IEEE Int. Conf. on Robotics and Automation, pp. 3032-3037, May 1999.
    [19] M. Kaneko, N. Imamura, K. Yokoi and K. Tanie, “A realization of stable grasp based on virtual stiffness model by robot fingers,” in Proc. IEEE Int. Workshop on Advanced Motion Control, pp. 156-163, 1990.
    [20] I. Kao, M. R. Cutkosky and R. S. Johansson, “Robotic stiffness control and calibration as applied to human grasping tasks,” IEEE Trans. of Robotic Automation, 13(4):557-566, 1997.
    [21] J. Kerr. and B. Roth, “Analysis of multifingered hands,” IJRR, 4(4):3-17, 1986.
    [22] O. Khatib, “A unified approach for motion and force control of robot manipulators: the operational space formulation,” IEEE J. of Robotics and Automation, RA-3(1):43-53, 1987.
    [23] B. H. Kim, B. J. Yi, I. H. Suh and S. R. Oh, “A biomimetic compliance control of robot hand by considering structures of human finger,” in Proc. of IEEE Int. Conf. on Robotics and Automation, pp. 3880-3887, 2000.
    [24] K. J. Kyriakopoulos, J. V. Riper, A. Zink and H. E. Stepanou, “Kinematic analysis and position/force control of the Anthrobot dexterous hand,” IEEE Trans. on Systems, Man, and Cybernetics Part B: Cybernetics, 27(1):95-104, 1997.
    [25] J. J. Lee, “Tendon-driven manipulators: analysis, synthesis, and control,” Ph.D. Thesis Report, 1991.
    [26] Z. J. Liang, “Self-organization fuzzy logic force control of robot,” Master Thesis, Department of Mechanical Engineering, National Taiwan University, R. O. C., 1993.
    [27] K. J. Lu, “Development and implementation of real-time visual servoing system for multi-agent soccer robot systems,” Master Thesis, Department of Mechanical Engineering, National Taiwan University, R. O. C., 2001.
    [28] Z. Lu and A. Goldenberg, “Implementation of impedance control using sliding mode theory,” IFAC Intelligent Tuning and Adaptive Control, 1991, Singapore.
    [29] Z. Lu, S. Kawamura and A. Goldenberg, “Sliding mode impedance control and its application to grid task,” in IEEE Int. Workshop on Intelligent Robotics and Systems IROS ’91, pp. 350-355, Nov. 1991.
    [30] H. Maekawa, K. Tanie and K. Komoria, “Dynamic grasping force control using tactile feedback for grasp of multifingered hand,” in Proc. of IEEE Int. Conf. on Robotics and Automation, pp. 2462-2469, April 1996.
    [31] M. T. Mason and J. K. Salisbury, “Robot hands and the mechanics of manipulation,” The MIT Press, 1985.
    [32] Y. Nakabo and M. Ishikawa, “Visual impedance using 1 ms visual feedback system,” in Proc. of IEEE Int. Conf. on Robotics and Automation, pp. 2333-2338, 1998.
    [33] C. Natale, B. Sicliano and L. Villani, “Spatial impedance control of redundant manipulators,” in Proc. of IEEE Int. Conf. on Robotics and Automation, pp. 1788-1793, 1999.
    [34] A. M. Okamura, N. Smaby and M. R. Cutkosky, “An overview of dexterous manipulation,” in Proc. of IEEE Int. Conf. on Robotics and Automation, pp. 255-262, 2000, San Francisco, CA.
    [35] J. K. Salisbury, “Kinematics and force control of articulated robot hands,” in Robot Hand and the Mechanics of Manipulation, edited by M. Mason and J. K. Salisbury, MIT Press, 1985.
    [36] A. C. Sanderson and L. E. Weiss, “Image-based visual servo control using relational graph error signals,” in Proc. of IEEE Conf. on Cybernetics and Society, pp. 1074-1077, 1980.
    [37] J. D. Schutter and H. V. Brussel, “Compliant robot motion I. A formalism for specifying compliant motion tasks,” Int. J. of Robotic Research, 7(4):3-17, 1988.
    [38] J. D. Schutter and H. V. Brussel, “Compliant robot motion II. A control approach based on external control loops,“ Int. J. of Robotic Research, 7(4):18-33, 1988.
    [39] K. B. Shimoga, “Robot grasp synthesis algorithms: a survey,” Int. J. of Robotics Research, 15(3):230-266, 1996.
    [40] K. B. Shimoga and A. A, Goldenberg, “Grasp admittance center: choosing admittance center parameters,” in Proc. Am. Control Conf., pp. 2527-2532, 1991, Boston, MA.
    [41] S. N. Simunovic, “Force information in assembly processes,” in Proc. of the 5th international Symposium on Industrial Robots, pp. 113-126, 1975, Chicago, Illinois.
    [42] J. -J. E. Slotine and W. Li, “Applied nonlinear control,” Prentice Hall, 1991.
    [43] M. Taylor, A. Blake and A. Cox, “Visually guided grasping in 3D,” in Proc. of IEEE Int. Conf. on Robotics and Automation, pp. 761-766, May 1994.
    [44] T. Tsuji and M. Kaneko, “Non-contact impedance control for redundant manipulator,” IEEE Trans. on Systems, Man, and Cybernetics Part A: Systems and Humans, 29(2):184-193, March 1999.
    [45] I. D. Walker, “Multifingered hands: a survey,” in Complex Robotic Systems, pp. 129-160, edited by P. Chiacchio and S. Chiaverini, Springer, 1998.
    [46] L. Weiss, A. Sanderson and C. Neuman, “Dynamic sensor based control of robots with visual feedback,” IEEE J. of Robotics and Automation, RA-3(5):404-417, 1987.
    [47] D. E. Whitney, “Quasi-Static assembly of compliantly supported rigid parts,” J. of Dynamic Systems, Measurement and Control, Trans. of the ASME, 104(1):65 – 77, March 1982.
    [48] D. E. Whitney, “Historical perspective and state of the art in robot force control,” Int. J. of Robotics Research, 6(1):3-14, 1987.
    [49] W. G. Yau, “Design and implementation of visual servoing system for realistic air target tracking,” Master Thesis, Department of Electrical Engineering, National Taiwan University, R. O. C., 2000.
    [50] T. Yoshikawa, “Manipulability of robotic mechanism,” Int. J. Robotic Research, 4(2):3-9, 1985.
    [51] T. Yoshikawa and X. Z. Zheng, “Coordinated dynamic hybrid position/force control for multiple robot manipulators handling one constrained object,” Int. J. of Robotics Research, 12(3):219-230, 1993.
    [52] 姚燕正,「兩隻各具三自由度鋼索驅動機械手之設計、建構與協調控制」,國立成功大學機械碩士論文,1993。

    下載圖示 校內:2008-09-08公開
    校外:2008-09-08公開
    QR CODE