簡易檢索 / 詳目顯示

研究生: 余舒晴
Yu, Shu-Ching
論文名稱: MA-1 對離體神經元保護:治療窗口與抗神經興奮毒性,抗氧化及清除自由基能力之探討
Neuroprotection of MA-1 in vitro: therapeutic window and anti-excitotoxicity, antioxidant as well as free radical-scavenging action
指導教授: 吳天賞
Wu, Tian-Shung
李宜堅
Lee, E.-Jian
學位類別: 碩士
Master
系所名稱: 生物科學與科技學院 - 生物科技研究所
Institute of Biotechnology
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 114
中文關鍵詞: 缺氧/缺葡萄糖實神經保護缺血性腦中風神經元細胞海馬迴組織Cinnamophilin(CINN)
外文關鍵詞: organotypic hippocampal tissue, neuronal cell, oxygen-glucose deprivation(OGD), Neuroprotection, stroke, cinnamophilin (CINN)
相關次數: 點閱:120下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 腦中風於十大死因中位居第二,而腦中風的病因 80% 是缺血性中風
    (ischemic stroke)。臨床上,仍缺乏有效的治療法,本研究期望能尋找出新藥物化合物可促進控制腦細胞缺血所引起的腦神經細胞損傷。本研究採用的實驗藥由菲律賓樟樹(Cinnamomum philippinense)萃取出來的化合物--MA-1進行實驗。由過去的
    研究已證實,MA-1為一抗氧化物及自由基清道夫,且可抑制血小板聚集。MA-1為高脂溶性的化合物,易通過血腦障壁治療急性缺血性腦中風,並發現強而有效的神經保護作用。
    研究中利用利用體外 (in vitro) 模擬缺血性腦中風的方式,進行MA-1保護神經細胞機制的探討。在缺血性腦中風造成傷害的原因之一是腦中glutamate的大量分泌。首先,我們運用glutamate傷害神經細胞模式,觀測MA-1是否可依濃度依存性會抑制神經細胞的死亡。而後,運用更近似於體內缺血性腦中風的研究模式--缺氧/
    缺葡萄糖實驗 (Oxygen-glucose deprivation,OGD) 。觀測MA-1是否可依濃度依存性的方式抑制缺氧/缺葡萄糖所引發的神經細胞與海馬迴組織傷害。再進一步探討MA-1,是否經由抑制脂質過氧化和清除自由基的方式,達到神經保護的作用。期望MA-1能夠成為具有保護與治療神經細胞作用的藥物。

    Stroke is the second most common cause of death worldwide. Ischemic stroke accounts for approximately 80% of all strokes, and lead to neurologic morbidity and mortality due to lack of efficient therapeutical treatments. MA-1, a natural compound isolated from Cinnamomum philippinense, is a strong antioxidant and free radical scavenger, which enhances cerebral hemodynamics, decreases platelet aggregation and lipid peroxidation and prevents energy depletion during ischemia. The agent is highly lipophilic and, therefore, has the potential to cross the blood-brain barrier. Recently, it has been reported that MA-1 is effective in reducing reperfusion-induced arrhythmia and has prominent neuroprotective properties.
    In this study, we showed that MA-1 decreases neuronal death in vitro. Glutamate is one of the factors that induce neuronal death following ischemic stroke. We observed that MA-1 reduced the glutamate-induced neuronal death in a concentration-dependent manner. To mimic the physiological condition in an ischemic brain, an oxygen-glucose deprivation (OGD) model was established. Results demonstrated that MA-1 reduced the OGD-induced neuronal and organotypic hippocampal tissue death in a concentration-dependent manner. Furthermore, we demonstrated that the protective mechanism of MA-1 is mediated through its inhibitory effects on lipid peroxidation, superoxide anion and free radical scavenging activity.

    目錄 誌謝 4 目錄 5 表目錄 12 圖目錄 13 第一章.緒論 16 1-1 神經系統 17 1-1-1. 中樞神經系統 (Central Nervous System, CNS) 17 1-1-2. 周邊神經系統 (Peripheral Nervous System, PNS) 18 1-1-3. 神經細胞 (Nerve cell;neuron) 18 1-2 細胞死亡 ( Cell death ) 20 1-2-1. 細胞意外死亡(Accidential cell death) 20 1-2-2. 細胞程式死亡(programmed cell death, PCD) 21 1-3 腦血管疾病介紹 24 1-3-1 我國腦中風發生之現況 24 1-3-2 腦血管意外(Cerebrovascular Accidents,CVA) 25 1-4 大腦血液循環的臨床生理學與病理生理學 27 1-4-1. 腦血管循環的臨床生理學 27 1-4-2. 腦血管循環的病理生理學 28 1-5 解剖位置 37 1-6 乳酸脫氫酵素 (Lactic Dehydrogenase; LDH) 39 1-7 實驗藥物 40 1-7-1. MA-1 40 1-7-2. 維生素E (Vitamin E) 42 1-7-3. 維生素C (Vitamin C) 43 1-8 缺氧及葡萄糖(oxygen and glucose deprivation;OGD)實驗 44 1-9 細胞染劑 45 1-10 研究計畫之目的 46 第二章.實驗材料與方法 47 2-1 實驗流程圖 47 2-1-1. Glutamate細胞毒性實驗設計 50 2-1-2. OGD實驗設計 51 2-2 材料 55 2-2-1. 初代神經元細胞培養 55 2-2-2. 海馬迴組織器官培養 57 2-2-3. Glutamate 造成初代神經元細胞興奮毒性損傷模式 60 2-2-4. 缺血模式形成 60 2-2-5. Propidium iodide(PI)and trypan blue staining 62 2-2-6. 自由基清除試驗 62 2-2-7. 腦組織脂質過氧化 62 2-3 實驗方法 63 2-3-1. 初代神經元培養 (primary neural culture) 63 2-3-2. 海馬迴組織器官培養 63 2-3-3. Glutamate 造成初代神經元細胞興奮毒性 65 2-3-4. OGD 前 66 2-3-5. a 缺血模式形成(PRE-Treat) 66 2-3-5. b 缺血模式形成(POST-Treat) 67 2-3-6. OGD 後 67 2-3-7. 細胞染色量化與計算影像細胞數 67 2-3-8. MA-1清除自由基的能力 68 2-3-9. 腦組織脂質過氧化 70 2-4 統計方法 70 第三章.結果 71 3-1 MA-1抑制 glutamate對於體外培養神經元造成的損傷 71 3-1-1. 利用PI染色實驗法證明MA-1抑制glutamate引發神經細胞的死亡。 71 3-1-2. 利用Trypan blue染色實驗法證明MA-1抑制glutamate引發神經細胞的死亡。 71 3-1-3. 利用Trypan blue吸光值變化法證明,MA-1抑制glutamate引發神經元的死亡 71 3-1-4. LDH量變化證明,MA-1以濃度依存性抑制glutamate引發神經元的死亡。 72 3-2 MA-1 保護體外培養神經元因缺氧缺糖 (OGD) 造成的損傷 72 3-2-1. 利用PI染色實驗法證明MA-1在神經細胞於OGD前加入,不同濃度下的保護效果 72 3-2-2. 利用Typan blue染色實驗法證明MA-1在神經細胞於 OGD前加入,不同濃度下的保護效果 72 3-2-3. 利用Trypan blue吸光值變化法證明MA-1在神經細胞於 OGD 前加入,不同濃度下的保護效果 72 3-2-4. LDH 量變化證明MA-1在神經細胞於OGD前加入,不同濃度下的保護效果 73 3-2-5. 利用 PI 染色實驗法證明 MA-1 在神經細胞於 OGD 後不同時間加入的保護效果 73 3-2-6. 利用 Trypan blue 染色實驗法證明 MA-1 在神經細胞於 OGD 後不同時間加入的保護效果 73 3-2-7. 利用 Trypan blue 吸光值變化法證明MA-1 在神經細胞於 OGD 後不同時間加入的保護效果 74 3-2-8. LDH 量變化證明MA-1 在神經細胞於 OGD 後不同時間加入的保護效果 74 3-3 MA-1 保護體外培養海馬迴組織因缺氧缺糖 (OGD) 造成的損傷 74 3-3-1. 利用 PI 染色實驗法證明 MA-1 在海馬迴組織於 OGD 前加入,不同濃度下的保護效果 74 3-3-2. 利用 PI 染色實驗法證明 MA-1 在海馬迴組織於 OGD在後不同時間加入的保護效果 76 3-4 MA-1清除自由基之能力 77 3-4-1. DPPH (1,1-Diphenyl-2-picrylhydrazyl) 自由基清除 77 3-4-2. ABTS(2,2-azino-bis(3-ethylbenzothiazoline-6-sulfonIC ACID) DIAMMONIUM SALT)自由基清除 77 3-5 MA-1 抗脂質過氧化 ( Lipid peroxidation ) 78 第四章.討論 79 4-1 MA-1預防性阻斷神經興奮毒性 79 4-2 缺氧及缺葡萄糖實驗時間探討 80 4-3 MA-1對神經保護效果與安全性 80 4-3-1. MA-1對於OGD損傷前的保護效果 81 4-3-2. MA-1 於 OGD 後不同時間點加藥比較 82 4-3-3. OGD實驗MA-1對於神經細胞及海馬迴組織保護劑量與時間之差異 83 4-4 自由基清除能力 84 4-5 抗氧化能力 84 第五章.結論 86 第六章.圖表 87 自述 113 表目錄 表1- 1細胞凋亡和細胞壞死的區別 24 表3- 1 MA-1與α-Tocopherol 和Ascorbic acid DPPH自由基清除能力之比較 103 表3- 2 MA-1與α-Tocopherol 和Ascorbic acid ABTS 自由基清除能力之比較 104 圖目錄 圖1- 1人體的大腦與脊椎 18 圖1- 2神經細胞之軸突與樹突 19 圖1- 3 神經細胞(神經元) 20 圖1- 4 細胞壞死與凋亡的形態區別 23 圖1- 5 供應腦部血流的主要血管構成 26 圖1- 6 腦底部動脈所組成之Willis氏動脈環 26 圖1- 8 腦缺血後各種生物化學物質的代謝變化 33 圖1- 9 腦部缺血後造成有毒物質及自由基的生成 35 圖1- 10 海馬迴之側面解剖圖 38 圖1- 11 老鼠大腦之橫切面 39 圖1- 12 顯微鏡下的海馬迴組織 39 圖1- 13 菲律賓樟樹 41 圖1- 14 MA-1的化學結構式 41 圖1- 15 維生素 E 與同分異構物化學結構式 42 圖1- 16 維生素 E與自由基作用共振結構 43 圖1- 17 維生素E radical 被 維生素C 還原成維生素E 43 圖1- 18 維生素C被自由基攻擊形成穩定結構 44 圖2- 1實驗流程圖1 47 圖2- 2 實驗流程圖2 48 圖2- 3 實驗流程圖3 49 圖2- 4 神經元細胞毒性實驗設計 50 圖2- 5 神經元細胞 OGD PRE-Treat 實驗設計 51 圖2- 6 神經元細胞 OGD POST-Treat 實驗設計 52 圖2- 7 海馬迴組織 OGD PRE-Treat 實驗設計 53 圖2- 8 海馬迴組織 OGD POST-Treat 實驗設計 54 圖2- 9 生理切片機 59 圖2- 10 小鼠麻醉 65 圖2- 11 撥開小鼠腦殼 露見大腦 65 圖2- 12 生理切片機刀片上分離出 65 圖2- 13 海馬迴組織培養 65 圖2- 14 DPPH自由基掃除呈色機制 68 圖2- 15 ABTS自由基生成機制 69 圖3- 1 Glutamate神經元細胞PI染色 87 圖3- 2 Glutamate 神經元細胞TB染色 88 圖3- 3 Glutamate 神經元細胞TB染色吸光值 89 圖3- 4 Glutamate 神經元細胞LDH 90 圖3- 5 神經元細胞Pre OGD 加藥 PI染色 91 圖3- 6 神經元細胞 Pre OGD加藥TB染色 92 圖3- 7 神經元細胞Pre OGD TB吸光值 93 圖3- 8 神經元細胞Pre OGD LDH 94 圖3- 9 神經元細胞POST OGD 加藥PI染色 95 圖3- 10 神經元細胞POST OGD 加藥 TB染色 96 圖3- 11 神經元細胞POST OGD 加藥TB吸光值 97 圖3- 12 神經元細胞POST OGD 加藥LDH 98 圖3- 13 海馬迴組織PRE OGD加藥PI染色 99 圖3- 14 CA1 區域中,各組死亡率比較 100 圖3- 15 CA3 區域中,各組死亡率比較 100 圖3- 16 DG 區域中,各組死亡率比較 100 圖3- 17 MA-1 清除DPPH能力 103 圖3- 18 MA-1 清除ABTS能力 104 圖3- 19 MA-1抗脂質過氧化 105

    1. Newman M.F, Grocott H.P, Mathew J.P, et al. Report of the substudy assessing the
    impact of neurocognitive function on quality of life 5 years after cardiac surgery. Stroke. 2001;32:2874-2881

    2. Dajas F, Rivera-Megret F, Blasina F, Arredondo F, Abin-Carriquiry J.A, Costa G,
    Echeverry C, Lafon L, Heizen H, Ferreira M, Morquio A. Neuroprotection by
    flavonoids. Braz J Med Bio Res 2003;36:1613-1620

    3. Alexi T, Borlongan C, Faull C, Williams C, Clark R, Gluckman P, Hughes P.
    Neuroprotective strategies for basal ganglia degeneration: Parikinson’s and
    Huntington’s diseases. Progress in Neurobioloty 2000;60:409-470

    4. Raghupathi R, Graham D.I, McIntosh T.K. Apoptosis after traumatic brain injury. J
    neurotrauma. 2000;17:927-938

    5. Martin L.J, Sieber F.E, Traystman R.J. Apoptosis and necrosis occur in separate neuronal populations in hippocampus and cerebellum, after ischemic and are associated with alterations in metabotropic glutamate receptor signaling pathways. J Cereb Blood Flow Metab. 2000;20:153-167

    6. Fiskum G. Mechanisms of neuronal death and neuroprotection. J Neurosurg
    Anesthesiol 2004;16:108-110

    7. Nicholls D, Attwell D. The release and uptake of excitatory amino acids. Trends in
    Pharmacological sciences. 1990;11:462-468

    8. Nicotera P, Lipton S. Excitotoxins in neuronal apoptosis and necrosis. J Cerebral Blood flow and metabolism. 1999, 19:583-591

    9. Picq M, Dubios M, Munri-Silem Y, Prugent A.F, Pacheco H. Flavonoid modulation of
    protein kinase C activation. Life Sciences. 1989;44:1563-1571

    10. Dugan L.L, Choi D.W. Hypoxic-ischemic brain injury and oxidative stress. In: Siegel Gj,Agranoff B.W, Albers R.W, Fischer S.K, Uhler M.D, eds. Basic Neurochemistry.Lippinocott-Raven Pulishers, Philadelphia, New York

    11. Maher P, Schubert D. Signaling by reactive oxygen species in the nervous system.
    CMLS cellular and molecular life sciences. 2000;57:1287-1305

    12. http://life.nthu.edu.tw/~g864264/Neuroscience/neuron/cell.htm

    13. 吳進安. 基礎神經學. 國立編譯館. 1996
    14. http://en.wikipedia.org/wiki/Apoptosis.htm
    15. http://users.rcn.com/jkimball.ma.ultranet/BiologyPages/A/Apoptosis.html
    16. http://users.rcn.com/jkimball.ma.ultranet/BiologyPages/A/Apoptosis.html
    17. http://www.cellsalive.com/apop.htm
    18. 蔡宜殷(民92)‧以Melatonin治療暫時性局部腦缺血白鼠有助其電生理及神經行為之改善‧國立成功大學醫學工程研究所碩士論文。
    19. 蔡宜殷. 以Melotonin 治療暫時性局部腦缺血白鼠有助其電生理及神經行為之善.國立成功大學醫學工程研究所碩士論文. 2003
    20. 陳仁澤 (民93)‧中風之危險因子‧臺北:行政院衛生署國民健康局。
    21. 國內醫療新聞 (民93)‧漫談腦中風‧秀傳醫療體系:國際厚生數位科技股份有限公司。
    22. Heart Center Online (HCO);http://heart.healthcentersonline.com/stroke/tia.cfm
    23. About,Inc.;http://adam.about.com/reports/000045.htm
    24. 陳俐璇(民93)‧以鎂離子治療暫時性局部腦缺血白鼠之電生理及神經行為之研究‧國立成功大學醫學工程研究所碩士論文。
    25. 張承能(民93)‧中風病患的治療與復健‧臺北:行政院衛生署國民健康局。
    26. 朱復禮 (民81)‧臨床神經醫學‧臺北:合記。
    27. 吳進安 (民85)‧基礎神經學‧臺北:合記。
    28. David Blake,Immunopharmacology of free radical species,pp.200-210
    29. Free radical biology and medicine,vol32,NO.9,pp.822-832
    30. Claude Lenfant,Oxygen.gene expression.cellular function,pp.151-159

    31. Alexandra Loidl, Eva Sevcsik, et al. (2003) Oxidized phospholipids in mmLDL
    induce apoptotic signaling via activation of acid sphingomyelinase in arterial smooth
    muscle cells. J. Biol. Chem, 10.1074
    32. 廖佩斐 (民96) ‧代謝性麩胺酸第五型作用調節劑NMDA結抗劑對NMDA受體的抑制反應‧慈濟大學藥理暨毒理學研究所碩士論文
    33. Michael J O, Caroline A H, Mark A W, et al. LY393615, a novel neuronal Ca2+ and
    Na+ channel blocker with neuroprotective effects in models of in vitro and in vivo
    cerebral ischemia. Brain Research 2001;888:138-149

    34. http://www.psycheducation.org/emotion/hippocampus.htm

    35. Lipski J, Wan CK, Bai JZ, Pi R, Li D, Donnelly D. Neuroprotective potential of
    ceftriaxone in in vitro models of stroke. Neuroscience. 2007;146:617-629

    36. Laura M.D, Crystal L.M, Dale R.C, Frederick C. Post-ischemia diazepam does not
    reduce hippocampal CA1 injury and does not improve hypothermic neuroprotection
    after forebrain ischemia in gerbils. Brain Research 2004;1013:223-229

    37. http://olddoc.tmu.edu.tw/chiaungo/h-check/h-chk-LDH.htm

    38. http://www.accuspeedy.com.tw

    39. Lee E-Jian, Chen Hung-Yi, Lee Ming-Yang, Chen Tsung-Ying, Hsu Yun-Shang, Hu Yu-Ling, Chang Guan-Liang, Wu Tian-Shung: Cinnamophilin reduces oxidative damage and protects against transient focal cerebral ischemia in mice. Free Radic. Biol. Med. 2005: 39(4):495-510.
    40. Hsiao, G.; Teng, C.M.; Sheu, J.R.; Cheng, Y.W.; Lam, K.K.; Lee, Y.M.; Wu, T.S.; Yen, M.H. Cinnamophilin as a novel antiperoxidative cytoprotectant and free radical scavenger. Biochim. Biophys. Acta. 1525:77-88; 2001.
    41. Yu, S.M.; Wu, T.S.; Teng, C.M. Pharmacological characterization of cinnamophilin, a novel dual inhibitor of thromboxane synthase and thromboxane A2 receptor. Br. J. Pharmacol. 111:906-912; 1994.
    42. Yu, S.M.; Ko, F.N.; Wu, T.S.; Lee, J.Y.; Teng, C.M. Cinnamophilin, a novel thromboxane A2 receptor antagonist, isolated from Cinnamomum philippinense. Eur. J. Pharmacol. 256:85-91; 1994.
    43. Su, M.J.; Chen, W.P.; Lo, T.Y.; Wu, T.S. Ionic mechanisms for the antiarrhythmic action of cinnamophilin in rat heart. J. Biomed. Sci. 6:376-86; 1999.
    44. Cheng, H.T.; Chang, H. Reduction of reperfusion injury in rat skeletal muscle following administration of cinnamophilin, a novel dual inhibitor of thromboxane synthase and thromboxane A2 receptor. Thorac. Cardiovasc. Surg. 43:73-76; 1995.
    45. Traber, M.G. and J. Atkinson, Vitamin E, antioxidant and nothing more. Free Radic Biol Med, 2007. 43(1): p. 4-15.
    46. Brigelius-Flohe R, Davies KJ. Is vitamin e an antioxidant, a regulator of signal
    transduction and gene expression, or a 'junk' food? Comments on the two
    accompanying papers: "Molecular mechanism of alpha-tocopherol action" By
    a. Azzi and "Vitamin e, antioxidant and nothing more" By m. Traber and j.
    Atkinson. Free Radic Biol Med. 2007;43:2-3

    47. Vitamin E - Structures and Chemistry; http://www.uic.edu/classes/phar/phar332/Clinical_Cases/vitamin%20caes vitamin%20E/Vitamin%20E%20Chemistry.htm

    48. Kanter M: Free radicals, exercise and antioxidant supplementation. Proc Nutr Soc 57: 9–13, 199849. Wikipedia Acid ascorbic ; http://ro.wikipedia.org/wiki/Acid_ascorbic

    50. Pringle AK, Iannotti F, Wilde GJC, et al. Neuroprotection by both NMDA and
    non-NMDA receptor antagonists in in vitro ischemia. Brain Research 1997;755:36-46
    51. Wang JP, Ho TF, Chang LC et al. J Pharm Pharmacol 1995;47:857-860

    52. Anna R, Tobias C, Fredrik A, Sailasree N, Tadeusz W. Mouse Hippocampal
    Organotypic Tissue Cultures Exposed to In Vitro “Ischemia ”Show Selective and
    Delayed CA1 Damage That Is Aggravated by Glucose. J Cerebral Blood Flow &
    Metabolism 2003;23;(1):23-33

    53. Brana C, Benham C, Sundstrom L. A method for characterizing cell death in vitro by
    combining propidium iodide staining with immunohistochemistry. Brain Research
    Protocols 2002;10:109-114

    54. Mironova EV, Evstratova AA, Antonov SM. A fluorescence vital assay for the recognition and quantification of excitotoxic cell death by necrosis and apoptosis using confocal microscopy on neurons in culture. J Neurosci Methods. 2007;163:1-8
    55. Higuchi Y, Hattori H, Kume T, Tsuji M, Akaike A, Furusho K. Increase in nitric oxide in the hypoxic-ischemic neonatal rat brain and suppression by 7-nitroindazole and aminoguanidine. Eur J Pharmacol. 1998;342:47-49
    56. Kraus RL, Pasieczny R, Lariosa-Willingham K, Turner MS, Jiang A, TraugerJW.
    Antioxidant properties of minocycline: Neuroprotection in an oxidative stress
    Assay and direct radical-scavenging activity. J Neurochem. 2005;94:819-827

    57. Lipski J, Wan CK, Bai JZ, Pi R, Li D, Donnelly D. Neuroprotective potential of
    ceftriaxone in in vitro models of stroke. Neuroscience. 2007;146:617-629

    58. Matsumoto Y, Yamamoto S, Suzuki Y, Tsuboi T, Terakawa S, Ohashi N,
    Umemura K. Na+/H+ exchanger inhibitor, SM-20220, is protective against
    excitotoxicity in cultured cortical neurons. Stroke. 2004;35:185-190

    59. Johnson EM, Greenlund LJS, Akins PT, Hsu CY. Neuronal apoptosis: Current
    understanding of molecular mechanisms and potential role in ischemia brain injury. J.Neurotrama 1995;12:843-852

    60. Lawrence EJ, Dentcheva E, Curtis KM, et al. Neuroprotection with delayed initiation of prolonged hypothermia after in vitro transient global ischemia. Resuscitation
    2005;64:383-388

    61. Stoppini L, Parisi L, Oropesa C, Muller D. Sprouting and functional recovery in
    co-cultures between old and young hippocampal organotypic slices. Neurosience
    1997;80:1127-1136

    62. Strasser U, Fischer G. Quantitative measurement of neuronal degeneration in
    organotypic hippocampal cultures after combined oxygen/glucose deprivation. J
    Neurosci. Methods 1995;57:177-186

    63. Laake JH, Haug FM, Wieloch T, Ottersen OP. A simple in vitro model of ischemic
    based on hippocampal slice cultures and propidium iodide fluorescence. Brain Res
    Protocols. 1999;4:173-184

    64. Arai K, Nishiyama N, Matsuki N, Ikegaya Y. Neuroprotective effects of
    lipoxygenase inhibitors against ischemic injury in rat hippocampal slice cultures.
    Brain Res. 2001;904:167-172

    65. Hou WC, Lee MH, Chen HJ, Liang WL, Han CH, Liu YW, Lin YH. Antioxidant
    activities of dioscorin, the storage protein of yam (dioscorea batatas decne)
    tuber. J Agric Food Chem. 2001;49:4956-4960

    66. Hou WC, Chen YC, Chen HJ, Lin YH, Yang LL, Lee MH. Antioxidant activities of
    trypsin inhibitor, a 33 kda root storage protein of sweet potato (ipomoea batatas
    (l.) lam cv. Tainong 57). J Agric Food Chem. 2001;49:2978-2981

    67. Yamaguchi T, Takamura H, Matoba T, Terao J. Hplc method for evaluation of
    the free radical-scavenging activity of foods by using
    1,1-diphenyl-2-picrylhydrazyl. Biosci Biotechnol Biochem. 1998;62:1201-1204

    68. Mir C, Clotet J, Aledo R, Durany N, Argemi J, Lozano R, Cervos-Navarro J,
    Casals N. Cdp-choline prevents glutamate-mediated cell death in cerebellar
    granule neurons. J Mol Neurosci. 2003;20:53-60

    69. Won SJ, Kim DY, Gwag BJ. Cellular and molecular pathways of ischemic
    neuronal death. J Biochem Mol Biol. 2002;35:67-86

    70. Buck J, Derguini F, Levi E, Nakanishi K, Hammerling U. Intracellular signaling
    by 14-hydroxy-4,14-retro-retinol. Science. 1991;254:1654-1656

    71. Mosbacher J, Schoepfer R, Monyer H, Burnashev N, Seeburg PH,
    Ruppersberg JP. A molecular determinant for submillisecond desensitization in
    glutamate receptors. Science. 1994;266:1059-1062

    72. Bonde C, Noraberg J, Noer H, Zimmer J. Ionotropic glutamate receptors and
    glutamate transporters are involved in necrotic neuronal cell death induced by
    oxygen-glucose deprivation of hippocampal slice cultures. Neuroscience.
    2005;136:779-794

    73. Jakubowicz-Gil J, Rzeski W, Zdzisinska B, Dobrowolski P, Gawron A. Cell death and neuronal arborization upon quercetin treatment in rat neurons. Acta Neurobiol Exp (Wars). 2008;68:139-146

    74. 陳婉玲(民95)‧Magnolol於離體海馬迴培養缺血時的神經保護劑量及治療期效之研究‧國立成功大學醫學工程研究所碩士論文。

    75. Neumann J, Gunzer M, Gutzeit HO, Ullrich O, Reymann KG, Dinkel K. Microglia
    provide neuroprotection after ischemia. FASEB J. 2006;20:714-716

    76. 吳小梅,陳宏山,姜正林,等.小鼠皮層神經元缺氧損傷的模型製備及其實驗觀察[J].南通醫學院學報,1999,19(4):408-409

    77. Tamura, H., & Shibamoto T, "Antioxidantive activity measurement and
    4-hydroxy nonenal.", J. Am. Oil Chem. Soc, 68:941–943, 1991.

    下載圖示 校內:2013-09-04公開
    校外:2013-09-04公開
    QR CODE