| 研究生: |
余舒晴 Yu, Shu-Ching |
|---|---|
| 論文名稱: |
MA-1 對離體神經元保護:治療窗口與抗神經興奮毒性,抗氧化及清除自由基能力之探討 Neuroprotection of MA-1 in vitro: therapeutic window and anti-excitotoxicity, antioxidant as well as free radical-scavenging action |
| 指導教授: |
吳天賞
Wu, Tian-Shung 李宜堅 Lee, E.-Jian |
| 學位類別: |
碩士 Master |
| 系所名稱: |
生物科學與科技學院 - 生物科技研究所 Institute of Biotechnology |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 114 |
| 中文關鍵詞: | 缺氧/缺葡萄糖實 、神經保護 、缺血性腦中風 、神經元細胞 、海馬迴組織 、Cinnamophilin(CINN) |
| 外文關鍵詞: | organotypic hippocampal tissue, neuronal cell, oxygen-glucose deprivation(OGD), Neuroprotection, stroke, cinnamophilin (CINN) |
| 相關次數: | 點閱:120 下載:7 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
腦中風於十大死因中位居第二,而腦中風的病因 80% 是缺血性中風
(ischemic stroke)。臨床上,仍缺乏有效的治療法,本研究期望能尋找出新藥物化合物可促進控制腦細胞缺血所引起的腦神經細胞損傷。本研究採用的實驗藥由菲律賓樟樹(Cinnamomum philippinense)萃取出來的化合物--MA-1進行實驗。由過去的
研究已證實,MA-1為一抗氧化物及自由基清道夫,且可抑制血小板聚集。MA-1為高脂溶性的化合物,易通過血腦障壁治療急性缺血性腦中風,並發現強而有效的神經保護作用。
研究中利用利用體外 (in vitro) 模擬缺血性腦中風的方式,進行MA-1保護神經細胞機制的探討。在缺血性腦中風造成傷害的原因之一是腦中glutamate的大量分泌。首先,我們運用glutamate傷害神經細胞模式,觀測MA-1是否可依濃度依存性會抑制神經細胞的死亡。而後,運用更近似於體內缺血性腦中風的研究模式--缺氧/
缺葡萄糖實驗 (Oxygen-glucose deprivation,OGD) 。觀測MA-1是否可依濃度依存性的方式抑制缺氧/缺葡萄糖所引發的神經細胞與海馬迴組織傷害。再進一步探討MA-1,是否經由抑制脂質過氧化和清除自由基的方式,達到神經保護的作用。期望MA-1能夠成為具有保護與治療神經細胞作用的藥物。
Stroke is the second most common cause of death worldwide. Ischemic stroke accounts for approximately 80% of all strokes, and lead to neurologic morbidity and mortality due to lack of efficient therapeutical treatments. MA-1, a natural compound isolated from Cinnamomum philippinense, is a strong antioxidant and free radical scavenger, which enhances cerebral hemodynamics, decreases platelet aggregation and lipid peroxidation and prevents energy depletion during ischemia. The agent is highly lipophilic and, therefore, has the potential to cross the blood-brain barrier. Recently, it has been reported that MA-1 is effective in reducing reperfusion-induced arrhythmia and has prominent neuroprotective properties.
In this study, we showed that MA-1 decreases neuronal death in vitro. Glutamate is one of the factors that induce neuronal death following ischemic stroke. We observed that MA-1 reduced the glutamate-induced neuronal death in a concentration-dependent manner. To mimic the physiological condition in an ischemic brain, an oxygen-glucose deprivation (OGD) model was established. Results demonstrated that MA-1 reduced the OGD-induced neuronal and organotypic hippocampal tissue death in a concentration-dependent manner. Furthermore, we demonstrated that the protective mechanism of MA-1 is mediated through its inhibitory effects on lipid peroxidation, superoxide anion and free radical scavenging activity.
1. Newman M.F, Grocott H.P, Mathew J.P, et al. Report of the substudy assessing the
impact of neurocognitive function on quality of life 5 years after cardiac surgery. Stroke. 2001;32:2874-2881
2. Dajas F, Rivera-Megret F, Blasina F, Arredondo F, Abin-Carriquiry J.A, Costa G,
Echeverry C, Lafon L, Heizen H, Ferreira M, Morquio A. Neuroprotection by
flavonoids. Braz J Med Bio Res 2003;36:1613-1620
3. Alexi T, Borlongan C, Faull C, Williams C, Clark R, Gluckman P, Hughes P.
Neuroprotective strategies for basal ganglia degeneration: Parikinson’s and
Huntington’s diseases. Progress in Neurobioloty 2000;60:409-470
4. Raghupathi R, Graham D.I, McIntosh T.K. Apoptosis after traumatic brain injury. J
neurotrauma. 2000;17:927-938
5. Martin L.J, Sieber F.E, Traystman R.J. Apoptosis and necrosis occur in separate neuronal populations in hippocampus and cerebellum, after ischemic and are associated with alterations in metabotropic glutamate receptor signaling pathways. J Cereb Blood Flow Metab. 2000;20:153-167
6. Fiskum G. Mechanisms of neuronal death and neuroprotection. J Neurosurg
Anesthesiol 2004;16:108-110
7. Nicholls D, Attwell D. The release and uptake of excitatory amino acids. Trends in
Pharmacological sciences. 1990;11:462-468
8. Nicotera P, Lipton S. Excitotoxins in neuronal apoptosis and necrosis. J Cerebral Blood flow and metabolism. 1999, 19:583-591
9. Picq M, Dubios M, Munri-Silem Y, Prugent A.F, Pacheco H. Flavonoid modulation of
protein kinase C activation. Life Sciences. 1989;44:1563-1571
10. Dugan L.L, Choi D.W. Hypoxic-ischemic brain injury and oxidative stress. In: Siegel Gj,Agranoff B.W, Albers R.W, Fischer S.K, Uhler M.D, eds. Basic Neurochemistry.Lippinocott-Raven Pulishers, Philadelphia, New York
11. Maher P, Schubert D. Signaling by reactive oxygen species in the nervous system.
CMLS cellular and molecular life sciences. 2000;57:1287-1305
12. http://life.nthu.edu.tw/~g864264/Neuroscience/neuron/cell.htm
13. 吳進安. 基礎神經學. 國立編譯館. 1996
14. http://en.wikipedia.org/wiki/Apoptosis.htm
15. http://users.rcn.com/jkimball.ma.ultranet/BiologyPages/A/Apoptosis.html
16. http://users.rcn.com/jkimball.ma.ultranet/BiologyPages/A/Apoptosis.html
17. http://www.cellsalive.com/apop.htm
18. 蔡宜殷(民92)‧以Melatonin治療暫時性局部腦缺血白鼠有助其電生理及神經行為之改善‧國立成功大學醫學工程研究所碩士論文。
19. 蔡宜殷. 以Melotonin 治療暫時性局部腦缺血白鼠有助其電生理及神經行為之善.國立成功大學醫學工程研究所碩士論文. 2003
20. 陳仁澤 (民93)‧中風之危險因子‧臺北:行政院衛生署國民健康局。
21. 國內醫療新聞 (民93)‧漫談腦中風‧秀傳醫療體系:國際厚生數位科技股份有限公司。
22. Heart Center Online (HCO);http://heart.healthcentersonline.com/stroke/tia.cfm
23. About,Inc.;http://adam.about.com/reports/000045.htm
24. 陳俐璇(民93)‧以鎂離子治療暫時性局部腦缺血白鼠之電生理及神經行為之研究‧國立成功大學醫學工程研究所碩士論文。
25. 張承能(民93)‧中風病患的治療與復健‧臺北:行政院衛生署國民健康局。
26. 朱復禮 (民81)‧臨床神經醫學‧臺北:合記。
27. 吳進安 (民85)‧基礎神經學‧臺北:合記。
28. David Blake,Immunopharmacology of free radical species,pp.200-210
29. Free radical biology and medicine,vol32,NO.9,pp.822-832
30. Claude Lenfant,Oxygen.gene expression.cellular function,pp.151-159
31. Alexandra Loidl, Eva Sevcsik, et al. (2003) Oxidized phospholipids in mmLDL
induce apoptotic signaling via activation of acid sphingomyelinase in arterial smooth
muscle cells. J. Biol. Chem, 10.1074
32. 廖佩斐 (民96) ‧代謝性麩胺酸第五型作用調節劑NMDA結抗劑對NMDA受體的抑制反應‧慈濟大學藥理暨毒理學研究所碩士論文
33. Michael J O, Caroline A H, Mark A W, et al. LY393615, a novel neuronal Ca2+ and
Na+ channel blocker with neuroprotective effects in models of in vitro and in vivo
cerebral ischemia. Brain Research 2001;888:138-149
34. http://www.psycheducation.org/emotion/hippocampus.htm
35. Lipski J, Wan CK, Bai JZ, Pi R, Li D, Donnelly D. Neuroprotective potential of
ceftriaxone in in vitro models of stroke. Neuroscience. 2007;146:617-629
36. Laura M.D, Crystal L.M, Dale R.C, Frederick C. Post-ischemia diazepam does not
reduce hippocampal CA1 injury and does not improve hypothermic neuroprotection
after forebrain ischemia in gerbils. Brain Research 2004;1013:223-229
37. http://olddoc.tmu.edu.tw/chiaungo/h-check/h-chk-LDH.htm
38. http://www.accuspeedy.com.tw
39. Lee E-Jian, Chen Hung-Yi, Lee Ming-Yang, Chen Tsung-Ying, Hsu Yun-Shang, Hu Yu-Ling, Chang Guan-Liang, Wu Tian-Shung: Cinnamophilin reduces oxidative damage and protects against transient focal cerebral ischemia in mice. Free Radic. Biol. Med. 2005: 39(4):495-510.
40. Hsiao, G.; Teng, C.M.; Sheu, J.R.; Cheng, Y.W.; Lam, K.K.; Lee, Y.M.; Wu, T.S.; Yen, M.H. Cinnamophilin as a novel antiperoxidative cytoprotectant and free radical scavenger. Biochim. Biophys. Acta. 1525:77-88; 2001.
41. Yu, S.M.; Wu, T.S.; Teng, C.M. Pharmacological characterization of cinnamophilin, a novel dual inhibitor of thromboxane synthase and thromboxane A2 receptor. Br. J. Pharmacol. 111:906-912; 1994.
42. Yu, S.M.; Ko, F.N.; Wu, T.S.; Lee, J.Y.; Teng, C.M. Cinnamophilin, a novel thromboxane A2 receptor antagonist, isolated from Cinnamomum philippinense. Eur. J. Pharmacol. 256:85-91; 1994.
43. Su, M.J.; Chen, W.P.; Lo, T.Y.; Wu, T.S. Ionic mechanisms for the antiarrhythmic action of cinnamophilin in rat heart. J. Biomed. Sci. 6:376-86; 1999.
44. Cheng, H.T.; Chang, H. Reduction of reperfusion injury in rat skeletal muscle following administration of cinnamophilin, a novel dual inhibitor of thromboxane synthase and thromboxane A2 receptor. Thorac. Cardiovasc. Surg. 43:73-76; 1995.
45. Traber, M.G. and J. Atkinson, Vitamin E, antioxidant and nothing more. Free Radic Biol Med, 2007. 43(1): p. 4-15.
46. Brigelius-Flohe R, Davies KJ. Is vitamin e an antioxidant, a regulator of signal
transduction and gene expression, or a 'junk' food? Comments on the two
accompanying papers: "Molecular mechanism of alpha-tocopherol action" By
a. Azzi and "Vitamin e, antioxidant and nothing more" By m. Traber and j.
Atkinson. Free Radic Biol Med. 2007;43:2-3
47. Vitamin E - Structures and Chemistry; http://www.uic.edu/classes/phar/phar332/Clinical_Cases/vitamin%20caes vitamin%20E/Vitamin%20E%20Chemistry.htm
48. Kanter M: Free radicals, exercise and antioxidant supplementation. Proc Nutr Soc 57: 9–13, 199849. Wikipedia Acid ascorbic ; http://ro.wikipedia.org/wiki/Acid_ascorbic
50. Pringle AK, Iannotti F, Wilde GJC, et al. Neuroprotection by both NMDA and
non-NMDA receptor antagonists in in vitro ischemia. Brain Research 1997;755:36-46
51. Wang JP, Ho TF, Chang LC et al. J Pharm Pharmacol 1995;47:857-860
52. Anna R, Tobias C, Fredrik A, Sailasree N, Tadeusz W. Mouse Hippocampal
Organotypic Tissue Cultures Exposed to In Vitro “Ischemia ”Show Selective and
Delayed CA1 Damage That Is Aggravated by Glucose. J Cerebral Blood Flow &
Metabolism 2003;23;(1):23-33
53. Brana C, Benham C, Sundstrom L. A method for characterizing cell death in vitro by
combining propidium iodide staining with immunohistochemistry. Brain Research
Protocols 2002;10:109-114
54. Mironova EV, Evstratova AA, Antonov SM. A fluorescence vital assay for the recognition and quantification of excitotoxic cell death by necrosis and apoptosis using confocal microscopy on neurons in culture. J Neurosci Methods. 2007;163:1-8
55. Higuchi Y, Hattori H, Kume T, Tsuji M, Akaike A, Furusho K. Increase in nitric oxide in the hypoxic-ischemic neonatal rat brain and suppression by 7-nitroindazole and aminoguanidine. Eur J Pharmacol. 1998;342:47-49
56. Kraus RL, Pasieczny R, Lariosa-Willingham K, Turner MS, Jiang A, TraugerJW.
Antioxidant properties of minocycline: Neuroprotection in an oxidative stress
Assay and direct radical-scavenging activity. J Neurochem. 2005;94:819-827
57. Lipski J, Wan CK, Bai JZ, Pi R, Li D, Donnelly D. Neuroprotective potential of
ceftriaxone in in vitro models of stroke. Neuroscience. 2007;146:617-629
58. Matsumoto Y, Yamamoto S, Suzuki Y, Tsuboi T, Terakawa S, Ohashi N,
Umemura K. Na+/H+ exchanger inhibitor, SM-20220, is protective against
excitotoxicity in cultured cortical neurons. Stroke. 2004;35:185-190
59. Johnson EM, Greenlund LJS, Akins PT, Hsu CY. Neuronal apoptosis: Current
understanding of molecular mechanisms and potential role in ischemia brain injury. J.Neurotrama 1995;12:843-852
60. Lawrence EJ, Dentcheva E, Curtis KM, et al. Neuroprotection with delayed initiation of prolonged hypothermia after in vitro transient global ischemia. Resuscitation
2005;64:383-388
61. Stoppini L, Parisi L, Oropesa C, Muller D. Sprouting and functional recovery in
co-cultures between old and young hippocampal organotypic slices. Neurosience
1997;80:1127-1136
62. Strasser U, Fischer G. Quantitative measurement of neuronal degeneration in
organotypic hippocampal cultures after combined oxygen/glucose deprivation. J
Neurosci. Methods 1995;57:177-186
63. Laake JH, Haug FM, Wieloch T, Ottersen OP. A simple in vitro model of ischemic
based on hippocampal slice cultures and propidium iodide fluorescence. Brain Res
Protocols. 1999;4:173-184
64. Arai K, Nishiyama N, Matsuki N, Ikegaya Y. Neuroprotective effects of
lipoxygenase inhibitors against ischemic injury in rat hippocampal slice cultures.
Brain Res. 2001;904:167-172
65. Hou WC, Lee MH, Chen HJ, Liang WL, Han CH, Liu YW, Lin YH. Antioxidant
activities of dioscorin, the storage protein of yam (dioscorea batatas decne)
tuber. J Agric Food Chem. 2001;49:4956-4960
66. Hou WC, Chen YC, Chen HJ, Lin YH, Yang LL, Lee MH. Antioxidant activities of
trypsin inhibitor, a 33 kda root storage protein of sweet potato (ipomoea batatas
(l.) lam cv. Tainong 57). J Agric Food Chem. 2001;49:2978-2981
67. Yamaguchi T, Takamura H, Matoba T, Terao J. Hplc method for evaluation of
the free radical-scavenging activity of foods by using
1,1-diphenyl-2-picrylhydrazyl. Biosci Biotechnol Biochem. 1998;62:1201-1204
68. Mir C, Clotet J, Aledo R, Durany N, Argemi J, Lozano R, Cervos-Navarro J,
Casals N. Cdp-choline prevents glutamate-mediated cell death in cerebellar
granule neurons. J Mol Neurosci. 2003;20:53-60
69. Won SJ, Kim DY, Gwag BJ. Cellular and molecular pathways of ischemic
neuronal death. J Biochem Mol Biol. 2002;35:67-86
70. Buck J, Derguini F, Levi E, Nakanishi K, Hammerling U. Intracellular signaling
by 14-hydroxy-4,14-retro-retinol. Science. 1991;254:1654-1656
71. Mosbacher J, Schoepfer R, Monyer H, Burnashev N, Seeburg PH,
Ruppersberg JP. A molecular determinant for submillisecond desensitization in
glutamate receptors. Science. 1994;266:1059-1062
72. Bonde C, Noraberg J, Noer H, Zimmer J. Ionotropic glutamate receptors and
glutamate transporters are involved in necrotic neuronal cell death induced by
oxygen-glucose deprivation of hippocampal slice cultures. Neuroscience.
2005;136:779-794
73. Jakubowicz-Gil J, Rzeski W, Zdzisinska B, Dobrowolski P, Gawron A. Cell death and neuronal arborization upon quercetin treatment in rat neurons. Acta Neurobiol Exp (Wars). 2008;68:139-146
74. 陳婉玲(民95)‧Magnolol於離體海馬迴培養缺血時的神經保護劑量及治療期效之研究‧國立成功大學醫學工程研究所碩士論文。
75. Neumann J, Gunzer M, Gutzeit HO, Ullrich O, Reymann KG, Dinkel K. Microglia
provide neuroprotection after ischemia. FASEB J. 2006;20:714-716
76. 吳小梅,陳宏山,姜正林,等.小鼠皮層神經元缺氧損傷的模型製備及其實驗觀察[J].南通醫學院學報,1999,19(4):408-409
77. Tamura, H., & Shibamoto T, "Antioxidantive activity measurement and
4-hydroxy nonenal.", J. Am. Oil Chem. Soc, 68:941–943, 1991.