簡易檢索 / 詳目顯示

研究生: 林立武
Lin, Li-Wu
論文名稱: 鎢摻雜之鍺酸鑭基磷灰石離子導體之晶體結構與電性
Crystal Structure and Electrical Properties of La/Ge Based Apatite Ionic Conductors Doped with W.
指導教授: 黃啟原
Huang, Chi-Yuen
學位類別: 碩士
Master
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 104
中文關鍵詞: 鎢摻雜鍺酸鑭固態氧化物燃料電池磷灰石結構
外文關鍵詞: Lanthanum oxygermanate, Electrolyte of solid oxide fuel cell, apatite structure
相關次數: 點閱:68下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用固相反應法合成鎢摻雜鍺酸鑭基磷灰石電解質材料,藉由添加不同量的 W6+ 取代La9.5Ge6-xWxO26.25+x 中的Ge4+ 位置 (x = 0,0.1,0.15,0.2,0.25,0.5,0.75,1),觀察晶體結構的變化及與導電性質間的關聯性。
    實驗結果顯示當鎢的添加量達到 x = 0.25 時,有明顯二次相生成,推測已超出固溶範圍。將煅燒後的粉末以 Rietveld 方法模擬精算晶格常數後,可觀察到鎢添加會使鍺氧四面體產生改變,且四面體上 O3周遭晶體結構變化較明顯,由此區域假設為間隙式氧離子移動所經過的空間,可模擬類似於文獻上間隙式氧離子移動的路徑。
    不同成分點之試片燒結緻密條件不同,以 1450℃ 燒結後相對密度達 95% 以上之試片,在 800℃,x = 0.15、0.2 時具有較高導電率 (0.0366、0.0398 S/cm),且 x = 0.2 在晶體結構中具有最大的 O4-O3 距離 3.3376Å 與最大的O3-La2距離 3.4838Å (長邊),推測此添加量在固溶極限內將晶格扭曲,擴大間隙式氧離子移動通道,使間隙式氧離子易於移動而具有較高導電性;當 x = 0.25 時含有較多二次相則會使導電率下降。

    Lanthanum oxygermanate apatite electrolyte, doped with tungsten (W), La9.5Ge6-xWxO26.25+x , was synthesized using a solid-state reaction method. Single phases were obtained in the compositional range of 0 ≤ x ≤ 0.25. The room temperature crystalline structure were refined by the Rietveld method using X-ray diffraction (XRD) data. The results of the crystal structure analysis indicate that the distance between the O3 and La2 atoms (O3-La2), increased with the amount of W dopant, and so does the distance between the O4 and O3 atoms (O4-O3). The electrical results reveal that La9.5Ge5.8W0.2O26.45 has the longest O3-La2 and O4-O3 distances (3.4838Å, 3.3376Å) in the solid solubility limit, with the highest electrical conductivity 0.0398 S/cm, at 800℃). These two results were combined in simulating the interstitial oxide migration path. The path way is a screw-like route around the c axis in three dimensional space and a sinusoid-like curve in the two dimensional ac plane. The activation energy is calculated from the Arrhenius plot, agreeing closely with the interstitial oxide mechanism.

    摘要 I Abstract II 誌謝 XIV 目錄 XV 圖目錄 XVIII 表目錄 XXII 第一章 緒論 1 1-1 前言 1 1-2 研究目的 2 第二章 前人研究及理論基礎 4 2-1 燃料電池 4 2-1-1 燃料電池之原理 4 2-1-2 燃料電池之種類與優缺點 5 2-2 固態氧化物燃料電池 7 2-2-1 固態氧化物燃料電池之結構與原理 7 2-2-2 固態氧化物燃料電池電解質之種類 9 2-3 磷灰石固態電解質 18 2-3-1 磷灰石固態電解質之結構 20 2-3-2 磷灰石固態電解質之導電機制 21 2-4 鍺酸鑭基電解質 23 2-4-1 鍺酸鑭基電解質之性質 25 2-4-2 不同摻雜物對鍺酸鑭基電解質之影響27 2-4-3 活化能與導電機制 32 第三章 實驗方法與分析 34 3-1 粉末製備 35 3-1-1 起始原料 35 3-1-2 鎢摻雜鍺酸鑭基 La9.5Ge6-xWxO26.25+x 粉末製備 35 3-1-3 粉末之熱差/熱重分析 36 3-1-4 粉末煅燒處理 37 3-2 煅燒粉末分析 37 3-2-1 X 光粉末繞射儀 37 3-2-2 掃描式電子顯微鏡 39 3-3 燒結體製備 39 3-4 燒結體分析 39 3-4-1 燒結收縮量測 39 3-4-2 燒結體密度量測 40 3-4-3 X 光繞射儀 40 3-4-4 掃描式電子顯微鏡 40 3-4-5 電性量測 41 3-4-6 Arrhenius 方程式 41 第四章 結果與討論 42 4-1 起始粉末分析 42 4-1-1 原料分析 42 4-1-2 熱差/熱重分析 45 4-2 煅燒粉末分析 46 4-2-1 結晶相分析 46 4-2-2 晶格常數計算 50 4-2-3 晶體結構模擬 54 4-2-4 微結構分析 65 4-3 燒結體分析 68 4-3-1 燒結收縮量測 68 4-3-2 燒結體密度計算 70 4-3-3 結晶相分析 71 4-3-4 微結構分析 72 4-3-5 電性分析 73 第五章 結論 77 參考文獻 78

    [1] S. Nakayama, H. Aono and Y. Sadaoka (1995), “Ionic conductivity of Ln10(SiO4)6O3 (Ln = La, Nd, Sm, Gd and Dy),” Chemistry Letters, 24, pp. 431~432.
    [2] S. Nakayama, T. Kageyama, H. Aono and Y. Sadaoka (1995), “Ionic conductivity of lanthanoid silicates Ln10(SiO4)6O3 (Ln = La, Nd, Sm, Gd, Dy, Y, Ho, Er and Yb),” Journal of Materials Chemistry, 5, pp. 1801~1805.
    [3] L. León-Reina, E.R. Losilla, M. Martínez-Lara, M.C. Martín-Sedeño, S. Bruque, P.Núñez, D. V. Sheptyakov and M. A. G. Aranda, (2005), “High oxide ion conductivity in Al-doped germanium oxyapatite, ” Chemistry of Materials, 17 (3), pp. 596~600.
    [4] 林婉茹、徐永富、王錫福 (2012),「摻雜對磷灰石結構鍺酸鑭基電解質應用於固態氧化物燃料電池之特性影響研究」,國立台北科技大學材料工程與科學研究所碩士論文。
    [5] 發行人葉惠青 (2010),2010能源產業技術白皮書,台北:經濟部能源局,第 341 頁。
    [6] http://www.rz.uni-karlsruhe.de/~cf01/research/research_SOFC.html
    [7] http://www.fuelcelltoday.com/about-fuel-cells/technologies/sofc
    [8] http://ssrl.slac.stanford.edu/research/highlights_archive/rockyflats.html
    [9] Federico Gallino , Cristiana Di Valentin and Gianfranco Pacchioni (2011), “Band gap engineering of bulk ZrO2 by Ti doping,” Phys. Chem. Chem. Phys., 13, pp. 17667~17675.
    [10] http://www.doitpoms.ac.uk/tlplib/fuel-cells/printall.php
    [11] Junjiang Zhu and Arne Thomas (2009), “Perovskite-type mixed oxides as catalytic material for NO removal,” Applied Catalysis B: Environmental, 92 (3–4), pp. 225~233.
    [12] S. Nakayama, Y. Higuchi, Y. Kondo, and M. Sakamoto (2004), “Effects of cation- or oxide ion-defect on conductivities of apatite-type La–Ge–O system ceramics,” Solid State Ionics, 170, pp. 219~223.
    [13] P.R. Slater, J.E.H. Sansom, and J.R. Tolchard (2005), “Development of Apatite-Type Oxide Ion Conductors,” Chemistry Record, 4 (3), pp. 373~384.
    [14] S. Nakayama and M. Sakamoto (1998), “Electrical properties of new type high oxide ionic conductor RE10Si6O27 (RE = La, Pr, Nd, Sm, Gd, Dy), ” Journal of the European ceramic Society, 18, pp. 1413~1418.
    [15] H. Yoshioka (2007), “Enhancement of ionic conductivity of apatite-type lanthanum silicates doped with cations,” Journal of the American Ceramic Society, 90, pp. 3099~3105.
    [16] S. Nakayama, M. Sakamoto, M. Higuchi, K. Kodaira, M. Sato, S. Kakita, T. Suzuki, and K. Itoh (1999), "Oxide ionic conductivity of apatite type Nd9.33(SiO4)6O2 single crystal,” Journal of the European Ceramic Society, 19, pp. 507~510.
    [17] L. Leon-Reina, J. Manuel Porras-Vazquez, Enrique R. Losilla, and Miquel A. G. Aranda (2006), “Interstitial oxide positions in oxygen-excess oxyapatites,” Solid State Ionics, 177, pp. 1307~1315.
    [18] S. Nakayama and M. Sakamoto (2001), “Ionic conductivities of apatite-type Lax(GeO4)6O1.5x-12 (x=8-9.33) polycrystals,” Journal of Materials Science Letters, 20, pp. 1627~1629.
    [19] J.E.H. Sansom, L. Hildebrandt, and P.R. Slater (2002), “An Investigation of the Synthesis and Conductivities of La-Ge-O Based Systems,” lonics, 8, pp. 155~160.
    [20] A. Orera, T. B aikie, P. Panchmatia, T. J. White, J. Hanna, M. E. Smith, M. S. Islam, E.Kendrick, and P. R. Slater (2011), “Strategies for the Optimisation of the Oxide Ion Conductivities of Apatite-Type Germanates,” Full Cells, 11, pp. 10~16.
    [21] 曾儒雅、黃啟原 (2013),「鈮摻雜對鍺酸鑭基磷灰石電解質晶體結構
    之研究」,國立成功大學資源工程研究所碩士論文。
    [22] Alison Jones, Peter R. Slater, and M. Saiful Islam (2008), “Local Defect Structures and Ion Transport Mechanisms in the Oxygen-Excess Apatite La9.67(SiO4)6O2.5” Chem. Mater, 20, pp. 5055~5060.
    [23] L. Leo´n-Reina, M. C. Martı´n-Seden˜ o, E. R. Losilla, A. Cabeza,
    M. Martı´nez-Lara, S. Bruque, F. M. B. Marques, D. V. Sheptyakov, and
    M. A. G. Aranda, (2003), “Crystalchemistry and Oxide Ion Conductivity in the
    Lanthanum Oxygermanate Apatite Series” Chem. Mater, 15, pp. 2099~2108.

    下載圖示 校內:2019-08-22公開
    校外:2019-08-22公開
    QR CODE