| 研究生: |
林育甫 Lin, Yu-Fu |
|---|---|
| 論文名稱: |
利用K條最短路徑預測未知新陳代謝途徑 Using k-shortest paths to predict unknown metabolic pathways |
| 指導教授: |
王惠嘉
Wang, Hei-Chia |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 資訊管理研究所 Institute of Information Management |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 44 |
| 中文關鍵詞: | 圖形理論 、K條最短路徑 、新陳代謝途徑 |
| 外文關鍵詞: | Metabolic Pathway, Graph Theory, K-shortest paths |
| 相關次數: | 點閱:76 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在後基因體時代,我們不僅僅要了解序列(sequence)中所隱含的意義,進一步探索基因與基因間互相作用所形成的新陳代謝途徑(metabolic pathway),更是另一項重大挑戰。
由於電腦科技快速蓬勃發展,使得生物相關資訊及實驗結果呈現指數性成長,有越來越多的公用資料庫提供免費且大量的生物相關資料,供生物研究人員使用,近年來,有許多學者開始利用公用資料庫所提供的生物資料建置新陳代謝網路圖形,並且透過圖形理論進行新陳代謝途徑推論;但這些研究往往忽略了對於起始節點及目標節點的選擇,而是由生物人員進行手動輸入,如此可能會導致推論結果不甚正確,因此在本研究中所提出的方法是藉由擷取現存資料庫相同新陳代謝圖形節點,以確保所有節點是屬於相同新陳代謝,接著再利用K條最短路徑演算法,對事先利用公用資料庫所建置的化合物(compounds)及反應(reactions)網路圖形進行新陳代謝途徑推論,挑選出候補的新陳代謝途徑,以供研究人員繼續後續分析工作。
In the post-genomic era, we not only hope to understand the information of biological sequence, and further, a greater challenge is to explore the metabolic pathway formed by interactive reactions between genes.
Since the computer technique improves rapidly, the computer generated biological data and experimental results increased exponentially. There are more and more public databases provided free and huge amount of biological data for biological researchers. In recent years, many researchers utilize the data source provided by there public databases, to construct metabolic pathway, and to infer the metabolic pathway by graph theory. But these researches usually ignored the choice of start and end nodes. The biological researchers must input these nodes manually, but it may cause the fault of inferring results. Hence, the method we propose in this research is to retrieve the nodes of reference pathway of KEGG pathway database, to ensure the nodes we retrieved are all in the similar function. We utilize k-shortest paths to infer the metabolic pathway in the metabolic pathway network which constructed by compounds and reactions. Finally, the candidated metabolic pathways we inferred are provided for the biological researcher to further analyze.
Arita, M. (2000). Metabolic reconstruction using shortest paths. Simulation Practice and Theory, 8(1-2), 109-125.
Altermann, E., & Klaenhammer, T.R. (2005). PathwayVoyager: pathway mapping using the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. BMC Genomics, 6(1), 60-66.
Baeza-Yates, R., & Ribeiro-Neto, B. (1999) Modern Information Retrieval. New York: The ACM Press.
Chen, M., & Hofestadt, R. (2004). Web-based information retrieval system for the prediction of metabolic pathways. IEEE transactions on NanoBioscience, 3(3), 192-199.
Cores, D., Couche, F., Wodak, S.J., & van Helden, J. (2005). Metabolic PathFinding: inferring relevant pathways in biochemical networks. Nucleic Acids Research, 33, W326-W330.
Doom, T., Raymer, M., & Krane, D. (2004). Bioinformatics. Potentials IEEE, 23(1), 24-27.
Goesmann, A., Haubrock, M., Meyer, F., Kalinowski, J., & Giegerich, R. (2002). PathFinder: reconstruction and dynamic visualization of metabolic pathways. Bioinformatics, 18(1), 124-129.
Kanehisa, M., Goto, S., Kawashima, S., & Nakaya, A. (2002). The KEGG databases at GenomeNet. Nucleic Acids Research, 30, 42-46.
Kanehisa, M., Goto, S., Kawashima, S., Okuno, Y., & Hattori, M. (2004). The KEGG resources for deciphering the genome. Nucleic Acids Research, 32, 277-280.
Kim, W., Aronson, A.R., & Wilbur, W.J. (2001). Automatic MeSH term assignment and quality assessment. Journal of the American Medical Informatics Association, suppl., 319-323.
Kuffer, R., Zimmer, R., & Lengauer, T. (2000). Pathway analysis in metabolic databases via differential metabolic display (DMD). Bioinformatics, 16(9), 825-836.
McShan, D.C., Rao, S., & Shah, I. (2003). PathMiner: predicting metabolic pathways by heuristic search. Bioinformatics, 19(13), 1692-1698.
Paley, S.M., & Karp P.D. (2002). Evaluation of computational metabolic-pathway predictions for Helicobacter pylori. Bininformatics, 18(5), 715-724.
Shatkay, H., Edwards, S., & Boguski, M. (2002). Information retrieval meets gene analysis. IEEE Intelligent Systems, Special Issue on Intelligent Systems in Biology, 17(2), 45-53.
Simeonidis, E., Rison, S.C.G., Thornton, J.M., Bogle, I.D.L., & Papageorgiou, L.G. (2003). Analysis of metabolic networks using a pathway distance metric through linear programming. Metabolic Engineering, 5(3), 211-219.
Schomburg, D., Rahman, S.A., Advani, P., Schunk, R., & Schrader R. (2005). Metabolic pathway analysis web service (Path Hunter Tool at CUBIC). Bioinformatics, 21(7), 1189-1193.
Tao, Y.C., & Leibel, R.L. (2002). Identifying functional relationships among human genes by systematic analysis of biological literature. BMC Bioinformatics, 3(16), 1-9.
Yen, J.Y. (1971). Finding the K shortest loopless paths in a network. Management Science, 17(11), 712-716.