簡易檢索 / 詳目顯示

研究生: 陳奕熹
Chen, I-Hsi
論文名稱: 用於高性能異質接面光感測器的少層數多過渡金屬硫系化合物合金吸收層
Few-layered multi-Transition Metal Chalcogenide Alloy Absorber for High-performance Heterojunction Photodetector
指導教授: 丁志明
Ting, Jyh-Ming
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 102
中文關鍵詞: 二維材料過渡金屬硫化物成分濃度梯度p-n異質接面光感測器
外文關鍵詞: 2D materials, transition metal chalcogenide, composition gradient, p-n heterojunction, photodetector device
相關次數: 點閱:26下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 以鹽輔助常壓化學氣相沉積(APCVD)的方法合成少層數多過渡金屬硫系合金晶體,並確認此合金晶體為少層數成分濃度梯度MoWSSe合金晶體。使用微影蝕刻的方式,透過將兩個電極連接至MoWSSe合金晶體的不同成分濃度位置來製作異質接面光感測器元件,並進行性能量測。在從紫外光到紅外光的各種光波長的照射下,此光感測器元件在可見光範圍內表現出最高性能:大於10 A/W的響應度,大於5×10^10 jones的偵測度,以及大於3000%的外部量子效率;在近紅外光波段也仍舊有大於1 A/W的響應度,大於5×10^9 jones的偵測度,以及大於150%的外部量子效率;且有小於5毫秒的快速上升時間。此光感測器元件的卓越性能是由於有多個p-n異質接面在少層數成分濃度梯度MoWSSe合金晶體中產生,並形成助於光生電子-電洞對的分離的內置電場。將MoWSSe合金晶體異質接面光感測器元件進行退火處理,結晶度的提升能改善開關比、偵測度和響應速度。

    A few-layered multi-transition metal dichalcogenide alloy crystal was synthesized using salt-assisted atmospheric pressure chemical vapor deposition (APCVD) and confirmed to be a composition-gradient MoWSSe alloy crystal. A heterojunction photodetector device was fabricated by connecting two electrodes to different composition gradient regions of the MoWSSe alloy crystal using lithography and etching methods. Performance measurements were conducted, showing the photodetector device exhibited the highest performance under visible light, with a responsivity greater than 10 A/W, detectivity over 5×10^10 jones, and external quantum efficiency exceeding 3000%. Even in the near-infrared wavelength range, the device still showed a responsivity greater than 1 A/W, detectivity over 5×10^9 jones, and external quantum efficiency over 150%. The rise time was also less than 5 milliseconds. The outstanding performance of this photodetector device is attributed to the multiple p-n heterojunctions formed within a few-layered composition-gradient MoWSSe alloy crystal, generating an internal electric field that facilitates the separation of photo-generated electron-hole pairs. Post-annealing treatment of the MoWSSe alloy heterojunction photodetector device enhanced its crystallinity, improving the on-off ratio, detectivity, and response speed.

    論文合格證明書 i 摘要 ii Extended Abstract iii 致謝 xxii 總目錄 xxiii 圖目錄 xxvii 表目錄 xxx 第一章 緒論 1 1.1 前言 1 1.2 研究背景 2 1.3 研究動機與目的 3 第二章 理論基礎與文獻回顧 4 2.1 二維過渡金屬硫化物的起源及光電應用 4 2.2 光感測器種類介紹 6 2.2.1 光電導體 6 2.2.2 P-N光電二極體 9 2.2.3 P-I-N光電二極體 11 2.2.4 累增光電二極體 13 2.3 光感測器效能指標 15 2.3.1 暗電流 15 2.3.2 開關電流比 15 2.3.3 光響應度 16 2.3.4 偵測率 16 2.3.5 外部量子效率 17 2.4 成分濃度梯度多過渡金屬硫化物合金晶體異質接面光感測器設計 19 第三章 實驗流程與設備 23 3.1 實驗流程圖 23 3.2 實驗藥品及材料 24 3.3 實驗儀器 25 3.3.1 精密電子天秤 25 3.3.2 超音波震盪機 25 3.3.3 管式真空氣氛爐 25 3.3.4 旋轉塗佈機 27 3.3.5 電磁加熱器 28 3.3.6 雙面對準/UV光感奈米壓印機 28 3.3.7 電子束蒸鍍系統 28 3.4 實驗步驟 29 3.4.1少層數過渡金屬硫化物合金晶體合成 29 3.4.2 光感測器元件製作 31 3.4.3 少層數過渡金屬硫化物光感測器元件的退火 32 3.5 分析量測儀器 33 3.5.1 光學顯微鏡 33 3.5.2 原子力顯微鏡 33 3.5.3 X光繞射分析儀器 34 3.5.4 X光光電子能譜分析 34 3.5.5 拉曼光譜儀 34 3.5.6 微光激發光譜儀 35 3.5.7 吸收光譜儀 35 3.5.8 光感測器性能表現量測系統 36 第四章 結果與討論 37 4.1 材料性質分析 37 4.1.1 表面形貌、生長機制及晶體結構分析 37 4.1.2 XPS表面化學分析 42 4.1.3 拉曼光譜分析 44 4.1.4 光致發光光譜分析 45 4.1.5 紫外光-可見光-近紅外光吸收光譜分析 46 4.1.6 拉曼光譜二維成像及光致發光光譜二維成像分析 47 4.1.6.1 MoWSSe合金晶體異質接面光感測器元件 47 4.1.6.2 MoWSSe合金晶體非異質接面光感測器元件 47 4.1.6.3退火後的MoWSSe合金晶體光感測器元件 48 4.2 光感測器表現分析 50 4.2.1 MoWSSe合金晶體異質接面光感測器元件 50 4.2.2 MoWSSe合金晶體非異質接面光感測器元件 51 4.2.3退火後的MoWSSe合金晶體光感測器元件 52 4.2.4光感測器元件性能的綜合比較 58 第五章 結論 62 參考文獻 63

    [1] Lopez-Sanchez, Oriol, et al. "Ultrasensitive photodetectors based on monolayer MoS2." Nature nanotechnology 8.7 (2013): 497-501.
    [2] Naz, Raheela, et al. "Nanostructured 2D Transition Metal Dichalcogenides (TMDs) as Electrodes for Supercapacitor." Nanostructured Materials for Supercapacitors. Cham: Springer International Publishing, 2022. 319-339.
    [3] Gomathi, P. T.; Sahatiya, P.; Badhulika, S. Large-Area, Flexible Broadband Photodetector Based on ZnS−MoS2 Hybrid on Paper Substrate. Adv. Funct. Mater. 2017, 27 (31), 1701611.
    [4] Selamneni, V.; Ganeshan, S. K.; Sahatiya, P. All MoS2 based 2D/0D Localized Unipolar Heterojunctions as Flexible Broadband (UV-Vis-NIR) Photodetectors. J. Mater. Chem. C 2020, 8 (33), 11593− 11602.
    [5] Selamneni, V.; Raghavan, H.; Hazra, A.; Sahatiya, P. MoS2/Paper Decorated with Metal Nanoparticles (Au, Pt, and Pd) Based plasmonic-Enhanced Broadband (Visible-NIR) Flexible Photodetectors. Adv. Mater. Interfaces 2021, 8 (6), 2001988.
    [6] Selamneni, V.; Kanungo, S.; Sahatiya, P. Large Area Growth of SnS2/Graphene on Cellulose Paper as a Flexible Broadband Photodetector and Investigating Its Band Structure through First Principles Calculations. Mater. Adv. 2021, 2, 2373−2381.
    [7] Selamneni, V.; Anand P, P.; Singh, A.; Sahatiya, P. Hybrid 0D−2D WS2-QDs(n)/SnS (p) as Distributed Heterojunctions for Highly Responsive Flexible Broad-Band Photodetectors. ACS Appl. Electron. Mater. 2021, 3 (9), 4105−4114.
    [8] Jia, Z.; Xiang, J.; Wen, F.; Yang, R.; Hao, C.; Liu, Z. Enhanced Photoresponse of SnSe-Nanocrystals-Decorated WS2 Monolayer Phototransistor. ACS Appl. Mater. Interfaces 2016, 8 (7), 4781−4788.
    [9] Jia, Z.; Li, S.; Xiang, J.; Wen, F.; Bao, X.; Feng, S.; Yang, R.; Liu, Z. Highly Sensitive and Fast Monolayer WS2 Phototransistors Realized by SnS Nanosheet Decoration. Nanoscale 2017, 9 (5), 1916−1924.
    [10] Yao, J.; Yang, G. 2D Material Broadband Photodetectors. Nanoscale 2020, 12 (2), 454−476.
    [11] Liu, R.; Wang, F.; Liu, L.; He, X.; Chen, J.; Li, Y.; Zhai, T. Band Alignment Engineering in Two-Dimensional Transition Metal Dichalcogenide-Based Heterostructures for Photodetectors. Small Struct. 2021, 2 (3), 2000136.
    [12] Fang, J.; Zhou, Z.; Xiao, M.; Lou, Z.; Wei, Z.; Shen, G. Recent Advances in Low-Dimensional Semiconductor Nanomaterials and Their Applications in High-Performance Photodetectors. InfoMat 2020, 2 (2), 291−317.
    [13] Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric Field in Atomically Thin Carbon Films. Science 2004, 306, 666−669.
    [14] Kim, K.; Choi, J.-Y.; Kim, T.; Cho, S.-H.; Chung, H.-J. A Role for Graphene in Silicon-Based Semiconductor Devices. Nature 2011, 479, 338−344.
    [15] Nazir, G.; Khan, M. F.; Akhtar, I.; Akbar, K.; Gautam, P.; Noh, H.; Seo, Y.; Chun, S. H.; Eom, J. Enhanced Photoresponse of ZnO Quantum Dot-Decorated MoS2 Thin Films. RSC Adv. 2017, 7 (27), 16890−16900.
    [16] Nalwa, H. S. A Review of Molybdenum Disulfide (MoS2) Based Photodetectors: From Ultra-Broadband, Self-Powered to Flexible Devices. RSC Adv. 2020, 10 (51), 30529−30602.
    [17] Lopez-Sanchez, O.; Lembke, D.; Kayci, M.; Radenovic, A.; Kis, A. Ultrasensitive Photodetectors Based on Monolayer MoS2. Nat. Nanotechnol. 2013, 8 (7), 497−501.
    [18] Splendiani, A.; Sun, L.; Zhang, Y.; Li, T.; Kim, J.; Chim, C.-Y.; Galli, G.; Wang, F. Emerging Photoluminescence in Monolayer MoS2. Nano Lett. 2010, 10 (4), 1271−1275.
    [19] Sundaram, R. S.; Engel, M.; Lombardo, A.; Krupke, R.; Ferrari, A. C.; Avouris, P.; Steiner, M. Electroluminescence in Single Layer MoS2. Nano Lett. 2013, 13 (4), 1416−1421.
    [20] Wang, L.; Jie, J.; Shao, Z.; Zhang, Q.; Zhang, X.; Wang, Y.; Sun, Z.; Lee, S.-T. MoS2/Si Heterojunction with Vertically Standing Layered Structure for Ultrafast, High-Detectivity, Self-Driven Visible−Near Infrared Photodetectors. Adv. Funct. Mater. 2015, 25 (19), 2910−2919.
    [21] Lan, C.; Li, C.; Ho, J. C.; Liu, Y. 2D WS2: From Vapor Phase Synthesis to Device Applications. Adv. Electron. Mater. 2021, 7, 2000688.
    [22] Yun, W. S.; Han, S. W.; Hong, S. C.; Kim, I. G.; Lee, J. D. Thickness and Strain Effects on Electronic Structures of Transition Metal Dichalcogenides: 2H-MX2 Semiconductors (M = Mo, W; X = S, Se, Te). Phys. Rev. B 2012, 85, 33305.
    [23] Hwang, W. S.; Remskar, M.; Yan, R.; Protasenko, V.; Tahy, K.; Chae, S. D.; Zhao, P.; Konar, A.; Xing, H.; Seabaugh, A.; Jena, D. Transistors with Chemically Synthesized Layered Semiconductor WS2 Exhibiting 105 Room Temperature Modulation and Ambipolar Behavior. Appl. Phys. Lett. 2012, 101, No. 013107.
    [24] Gu, X.; Yang, R. Phonon Transport in Single-Layer Transition Metal Dichalcogenides: A First-Principles Study. Appl Phys. Lett. 2014, 105, 131903.
    [25] Zhang, W.; Huang, Z.; Zhang, W.; Li, Y. Two-Dimensional Semiconductors with Possible High Room Temperature Mobility. Nano Res. 2014, 7, 1731−1737.
    [26] Andrzejewski, D.; Oliver, R.; Beckmann, Y.; Grundmann, A.; Heuken, M.; Kalisch, H.; Vescan, A.; Kummell, T.; Bacher, G. Flexible Large-Area Light-Emitting Devices Based on WS2 Monolayers. Adv. Opt. Mater. 2020, 8, 2000694.
    [27] Zeng, H.; Liu, G.-B.; Dai, J.; Yan, Y.; Zhu, B.; He, R.; Xie, L.; Xu, S.; Chen, X.; Yao, W.; Cui, X. Optical Signature of Symmetry Variations and Spin-Valley Coupling in Atomically Thin Tungsten Dichalcogenides. Sci. Rep. 2013, 3,1−5.
    [28] Feng, S.; Cong, C.; Konabe, S.; Zhang, J.; Shang, J.; Chen, Y.; Zou, C.; Cao, B.; Wu, L.; Peimyoo, N.; Zhang, B.; Yu, T. Engineering Valley Polarization of Monolayer WS2: A Physical Doping Approach. Small 2019, 15, 1805503.
    [29] Bin Rafiq, M. K. S.; Amin, N.; Alharbi, H. F.; Luqman, M.; Ayob, A.; Alharthi, Y. S.; Alharthi, N. H.; Bais, B.; Akhtaruzzaman, M. WS2: A New Window Layer Material for Solar Cell Application. Sci. Rep 2020, 10,1−11.
    [30] Wang, Y.; Sohier, T.; Watanabe, K.; Taniguchi, T.; Verstraete, M. J.; Tutuc, E. Electron Mobility in Monolayer WS2 Encapsulated in Hexagonal Boron-Nitride. Appl. Phys. Lett. 2021, 118, 102105.
    [31] Lan, C.; Zhou, Z.; Zhou, Z.; Li, C.; Shu, L.; Shen, L.; Li, D.; Dong, R.; Yip, S.; Ho, J. C. Wafer-Scale Synthesis of Monolayer WS2 for High-Performance Flexible Photodetectors by Enhanced Chemical Vapor Deposition. Nano Res. 2018, 11, 3371−3384.
    [32] Zeng, L.; Tao, L.; Tang, C.; Zhou, B.; Long, H. High Responsivity UV-Vis Photodetector Based on Transferable WS2 Film Deposited by Magnetron Sputtering. Sci. Rep. 6,1−8.
    [33] Shi, L.; Nihtianov, S. Comparative Study of Silicon-Based Ultraviolet Photodetectors. IEEE Sens. J. 2012, 12 (7), 2453−2459.
    [34] Long, M.; Gao, A.; Wang, P.; Xia, H.; Ott, C.; Pan, C.; Fu, Y.; Liu, E.; Chen, X.; Lu, W.; et al. Room Temperature High-Detectivity Mid-Infrared Photodetectors Based on Black Arsenic Phosphorus. Sci. Adv. 2017, 3 (6), e1700589.
    [35] Mikulics, M.; Marso, M.; Javorka, P.; Kordoš, P.; Lüth, H.; Kočan, M.; Rizzi, A.; Wu, S.; Sobolewski, R. Ultrafast Metal- Semiconductor-Metal Photodetectors on Low-Temperature-Grown GaN. Appl. Phys. Lett. 2005, 86 (21), 211110.
    [36] Jalouli, Alireza, et al. "Transition metal dichalcogenide graded alloy monolayers by chemical vapor deposition and comparison to 2D Ising model." The Journal of Chemical Physics 156.13 (2022).
    [37] Susarla, Sandhya, et al. "Quaternary 2D transition metal dichalcogenides (TMDs) with tunable bandgap." Advanced Materials 29.35 (2017): 1702457.
    [38] Zhang, Rui, et al. "Controlled layer thinning and p‐type doping of WSe2 by vapor XeF2." Advanced Functional Materials 27.41 (2017): 1702455.
    [39] Zhang, Jinming, et al. "Large-scale MoS2(1−x)Se2x monolayers synthesized by confined-space CVD." Nanotechnology 32.35 (2021): 355601.
    [40] Zhang, Yudong, et al. "Chemical vapor deposited WS2/MoS2 heterostructure photodetector with enhanced photoresponsivity." Journal of Physics D: Applied Physics 55.17 (2022): 175101.
    [41] Wirth, J. L., and S. C. Rogers. "The transient response of transistors and diodes to ionizing radiation." IEEE Transactions on Nuclear Science 11.5 (1964): 24-38.
    [42] Namgung, Seok Daniel, et al. "Influence of post-annealing on the off current of MoS2 field-effect transistors." Nanoscale research letters 10 (2015): 1-6.
    [43] Islam, Arnob, Jaesung Lee, and Philip X-L. Feng. "All-dry transferred single-and few-layer MoS2 field effect transistor with enhanced performance by thermal annealing." Journal of Applied Physics 123.2 (2018).
    [44] Zhang, Wenting, et al. "CVD synthesis of Mo(1-x)WxS2 and MoS2(1-x)Se2x alloy monolayers aimed at tuning the bandgap of molybdenum disulfide." Nanoscale 7.32 (2015): 13554-13560.
    [45] Rymzhina, Anastasiia, et al. "Recent trends in the fabrication of photodetectors: A detailed analysis on the photodetection properties of new 2D-TMCs." Materials Today Communications 35 (2023): 106247.
    [46] Lopez-Sanchez, Oriol, et al. "Ultrasensitive photodetectors based on monolayer MoS2." Nature nanotechnology 8.7 (2013): 497-501.
    [47] Chang, Yung-Huang, et al. "Monolayer MoSe2 grown by chemical vapor deposition for fast photodetection." ACS nano 8.8 (2014): 8582-8590.
    [48] Xia, Jing, et al. "CVD synthesis of large-area, highly crystalline MoSe2 atomic layers on diverse substrates and application to photodetectors." Nanoscale 6.15 (2014): 8949-8955.
    [49] Zhao, Yanfeng, et al. "High response and broadband photodetection by monolayer MoSe2 with vanadium doping and Mo vacancies." Applied Surface Science 564 (2021): 150399.
    [50] Wazir, Nasrullah, et al. "Three-terminal photodetectors based on chemical vapor deposition-grown triangular MoSe2 flakes." FlatChem 34 (2022): 100399.
    [51] Apte, Amey, et al. "Telluride-based atomically thin layers of ternary two-dimensional transition metal dichalcogenide alloys." Chemistry of Materials 30.20 (2018): 7262-7268.
    [52] Mao, Jiatong, et al. "Wafer-scale 1T’ MoTe2 for fast response self-powered wide-range photodetectors." ACS Applied Materials & Interfaces 15.23 (2023): 28267-28276.
    [53] Fan, Ye, et al. "Photoinduced Schottky barrier lowering in 2D monolayer WS2 photodetectors." Advanced Optical Materials 4.10 (2016): 1573-1581.
    [54] Zheng, Zhaoqiang, et al. "Flexible, transparent and ultra-broadband photodetector based on large-area WSe2 film for wearable devices." Nanotechnology 27.22 (2016): 225501.
    [55] Sun, Mengxing, et al. "Heterostructured graphene quantum dot/WSe2/Si photodetector with suppressed dark current and improved detectivity." Nano Research 11 (2018): 3233-3243.
    [56] Zhang, Wenjing, et al. "Role of metal contacts in high-performance phototransistors based on WSe2 monolayers." ACS nano 8.8 (2014): 8653-8661.
    [57] Zhao, Zhengui, et al. "Growth of few-layer WTe2 by a salt-assisted double-tube chemical vapor deposition method with high infrared photosensitivity." Nanoscale 15.28 (2023): 11955-11962.
    [58] Modi, Krishna H., et al. "Alloy engineering in InxSn1-xS for enhanced photodetection application." Optical Materials 134 (2022): 113154.
    [59] Liu, Gangzha, et al. "High-performance photodetectors based on two-dimensional tin (II) sulfide (SnS) nanoflakes." Journal of Materials Chemistry C 6.37 (2018): 10036-10041.
    [60] Khimani, Ankurkumar J., et al. "Alloy engineering to promote photodetection in InxSn1-xS2 and SbxSn1-xS2 ternary alloys." Materials Letters 236 (2019): 187-189.
    [61] Ye, Gonglan, et al. "Synthesis of large-scale atomic-layer SnS2 through chemical vapor deposition." Nano Research 10 (2017): 2386-2394.
    [62] Wu, Jingjie, et al. "Spiral growth of SnSe2 crystals by chemical vapor deposition." Advanced Materials Interfaces 3.16 (2016): 1600383.
    [63] Zhou, Xing, et al. "Ultrathin SnSe2 flakes grown by chemical vapor deposition for high‐performance photodetectors." Advanced Materials 27.48 (2015): 8035-8041.
    [64] Hafeez, Muhammad, et al. "Large‐area bilayer ReS2 film/multilayer ReS2 flakes synthesized by chemical vapor deposition for high performance photodetectors." Advanced Functional Materials 26.25 (2016): 4551-4560.
    [65] Kang, Peipei, et al. "Controllable synthesis of crystalline ReS2(1-x)Se2x monolayers on amorphous SiO2/Si substrates with fast photoresponse." Advanced Optical Materials 8.4 (2020): 1901415.
    [66] Hafeez, Muhammad, et al. "Chemical vapor deposition synthesis of ultrathin hexagonal ReSe2 flakes for anisotropic raman property and optoelectronic application." Advanced Materials 28.37 (2016): 8296-8301.
    [67] Sun, Xiaona, et al. "Controllable Synthesis of 2H‐1T’ MoxRe(1‐x)S2 Lateral Heterostructures and Their Tunable Optoelectronic Properties." Advanced Materials 35.38 (2023): 2304171.
    [68] Wu, Bin, et al. "Highly crystalline Mo1-xRexS2 monolayers by NaCl-assisted and space-confined chemical vapor deposition." Thin Solid Films 722 (2021): 138576.
    [69] Ding, Kaixuan, et al. "Controllable synthesis of WS2(1-x)Se2x monolayers with fast photoresponse by a facile chemical vapor deposition strategy." Materials Science and Engineering: B 269 (2021): 115176.
    [70] Wang, Zixuan, et al. "Phase‐Controlled Synthesis of Monolayer W1-xRexS2 Alloy with Improved Photoresponse Performance." Small 16.20 (2020): 2000852.
    [71] Huang, Jidong, et al. "Large-area epitaxial growth of 2D ZrS2(1-x)Se2x semiconductor alloys with fully tunable compositions and bandgaps for optoelectronics." Science China Materials 66.5 (2023): 1870-1878.
    [72] Wang, Denggui, et al. "Large‐Area Synthesis of Layered HfS2(1-x)Se2x Alloys with Fully Tunable Chemical Compositions and Bandgaps." Advanced Materials 30.44 (2018): 1803285.
    [73] Shi, Wenwu, and Zhiguo Wang. "Mechanical and electronic properties of Janus monolayer transition metal dichalcogenides." Journal of Physics: Condensed Matter 30.21 (2018): 215301.

    無法下載圖示 校內:2028-01-01公開
    校外:2028-01-01公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE