| 研究生: |
謝易倫 Hsieh, Yi-Lun |
|---|---|
| 論文名稱: |
穿孔環狀鰭管式熱交換器之混合對流熱傳的實驗及數值研究 Experimental And Numerical Study on Mixed Convection Heat Transfer of Perforated Annular Finned Tube Heat Exchanger |
| 指導教授: |
陳寒濤
Chen, Han-Taw |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 101 |
| 中文關鍵詞: | 逆算法 、CFD模擬 、穿孔環狀鰭管式熱交換器 、混合對流 |
| 外文關鍵詞: | Inverse method, CFD, Perforated annular finned tube heat exchanger, Mixed convection |
| 相關次數: | 點閱:62 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文以實驗溫度及逆算法搭配三維CFD軟體得出穿孔環狀鰭管式熱交換器在矩形流道中,處於混合對流時的熱傳以及流場特性,並探討入口風速、穿孔位置及鰭片間距對上述特性之影響。空氣流經環狀鰭管式熱交換器時所產生之複雜流動行為,使得鰭片上的熱傳係數並非均勻分布,因此將鰭片劃分為多個子區域,使用實驗量測溫度結合有限差分法及最小平方法的逆算法預測鰭片之熱傳係數。本文亦利用CFD商用軟體進行數值模擬,求得溫度場、流場及熱傳係數後與實驗數據及逆算法結果比較,探討不同紊流模式及網格劃分之適用及可信度。結果顯示於模擬中選用RNG k-ε紊流模式較為符合實驗及逆算法結果與趨勢;隨著風速加快、間距增大會使熱傳係數提升;此外,於低速尾流區穿孔之鰭片與未穿孔環形鰭片相比,熱傳係數最高可增加達18.56%,而於高速區穿孔之鰭片熱傳係數則普遍略低於未穿孔環形鰭片,不同鰭片的流場特性亦將在本文之中探討。
This study uses experimental temperature data and inverse method along with three-dimensional computational fluid dynamics (CFD) software to investigate the heat transfer and fluid characteristics of perforated annular finned tube heat exchanger under mixed convection in a rectangular tunnel. This study examines the effects of parameters such as air inlet velocity, locations of perforation and fin spacing on the characteristics. Because of the complex air flow passing by the heat exchanger, the heat transfer coefficient on the fin is not uniform. Therefore the inverse method, using experimental temperature data combined with finite difference method and least-squares scheme is applied. This study also uses CFD software to calculate the heat coefficients, temperature and flow fields and compares them with experimental data and inverse results, in order to obtain the reliability among several flow models and different mesh systems. The results show that RNG k-ε is more suitable for this study, and increasing the air inlet velocity and fin spacing will enhance the heat ransfer. In Comparison with non-perforated fin, the one with perforation in the low-velocity wake region has higher heat transfer coefficients up to 18.56%, and heat transfer coefficients of fin with perforation in the high-velocity region are generally lower than non-perforated one. The fluid charateristics of different types of fins are also discussed.
[1] A.D. Kraus, A. Aziz, J. Welty, Extended surface heat transfer, John Wiley and Sons, Inc., 2001.
[2] F.E.M. Saboya and E.M. Sparrow, Local and average transfer coefficients for one-row plate fin and tube heat exchanger configurations, ASME J. Heat Transfer, vol. 96, pp. 265-272, 1974.
[3] E.C. Rosman, P. Carajilescov, F.E.M. Saboya, Performance of one- and two-row tube and plate fin heat exchangers, ASME Journal of Heat Transfer, vol.106, pp.627-632, 1984.
[4] R. Romero-Mendez, M. Sen, K.T. Yang and R. McClain, Effect of fin spacing on convection in a plate fin and tube exchanger, Int. J. Heat Mass Transfer, vol. 43, pp. 39-51, 2000.
[5] B. Şahin, A. Akkoca, N.A. Öztürk and Akilli, Investigation of flow characteristics in a plate fin and tube heat exchanger model composed of single cylinder, Int. J. Heat Fluid Flow, vol. 27, pp. 522-530, 2006.
[6] B. Şahin, N.A. Öztürk, C. Ozalp and C. Canpolat, PIV measurements of flow through normal triangular cylinder arrays in the passage of a model plate-tube heat exchanger, Int. J. Heat Fluid Flow, vol. 61, pp. 531-544, 2016.
[7] M.N. Özisik, Heat Conduction, 2nd ed., Wiley, Chapter 14, 1993.
[8] K. Kurpisz, A.J. Nowak, Inverse Thermal Problems, Computational Mechanics Publications, Southampton, 1995.
[9] J.H Lin, C.K. Chen, Y.T. Yang, An inverse estimation of the thermal boundary behavior of a heated cylinder normal to a laminar air stream, International Journal of Heat and Mass Transfer, vol.43, pp.3991-4001, 2000.
[10] H.T. Chen, J.P. Song, Y.T. Wang, Prediction of heat transfer coefficient on the fin inside one-tube plate finned-tube heat exchangers, International Journal of Heat and Mass Transfer, vol.48, pp.2697-2707, 2005.
[11] H.T .Chen, J.C. Chou, investigation of natural-convection heat transfer coefficient on a vertical square fin of finned-tube heat exchangers, International Journal of Heat and Mass Transfer, pp.3034-3044, 2006.
[12] H.T. Chen and W.L. Hsu, Estimation of heat-transfer characteristics on a vertical annular circular fin of finned-tube heat exchangers in forced convection, Int. J. Heat Mass Transfer, vol. 51, pp.1920-1932, 2008.
[13] H.T. Chen, J.C. Chou and H.C. Wang, Estimation of heat transfer coefficient on the vertical plate fin of finned-tube heat exchangers for various air speeds and fin spacings, Int. J. Heat Mass Transfer, vol. 50, pp. 45-57, 2007.
[14] M.S. Mon and U. Gross, Numerical study of fin-spacing effects in annular-finned tube heat exchangers, Int. J. Heat Mass Transfer, vol. 47, pp. 1953-1964, 2004.
[15] A. Kumar, J.B. Joshi, A.K. Nayak and P.K. Vijayan, 3D CFD simulations of air cooled condenser-III: Thermal–hydraulic characteristics and design optimization under forced convection conditions, Int. J. Heat Mass Transfer, vol. 93, pp. 1227-1247, 2016.
[16] H.T. Chen, Y.J. Chiu, C.S. Liu, J.R. Chang, Numerical and experimental study of natural convection heat transfer characteristics for vertical annular finned tube heat exchanger, Int. J. Heat Mass Transfer, vol. 109, pp. 378-392, 2017.
[17] H.T. Chen, H.Y. Chou, H.C Tseng, J.R. Chang, Numerical study on natural convection heat transfer of annular finned tube heat exchanger in chimney with experimental data, Int. J. Heat Mass Transfer, vol. 127, pp. 483-496, 2018.
[18] M.R. Shaeri, R.W. Bonner III, Analytical heat transfer model for laterally perforated-finned heat sinks, Int. J. Heat Mass Transfer, vol. 131, pp. 1164-1173, 2019.
[19] A.H. Dastbelaraki, M. Yaghoubi, M.M. Tavakol, A. Rahmatmanda, Numerical analysis of convection heat transfer from an array of perforated fins using the Reynolds averaged Navier–Stokes equations and large-eddy simulation method, Applied Mathematical Modelling, vol. 63, pp. 660-687, 2018.
[20] F.Z. Bakhti, M. Si-Ameur, A comparison of mixed convective heat transfer performance of nanofluids cooled heat sink with circular perforated pin fin, Applied Thermal Engineering, vol. 159, 2019.
[21] R. Karabacak, G. Yakar, Forced convection heat transfer and pressure drop for a horizontal cylinder with vertically attached imperforate and perforated circular fins, Energy Conversion and Management, vol. 52, Issues 8-9, pp. 2785-2793, 2011.
[22] X. Liu, J. Yu, G. Yan, A numerical study on the air-side heat transfer of perforated finned-tube heat exchangers with large fin pitches, Int. J. Heat Mass Transfer, vol. 100, pp. 199-207, 2016.
[23] A. Bejan, Convection Heat Transfer. John wiley & sons, 2013.
[24] J.Y. Jang, H.T. Chen, H. Ay, The development of high efficiency air-cooled stream condenser for the power plant (2/2), Report of National Council Science, Taiwan, NSC 92-2622-E-006-146, 2005.
[25] 林子祥,預測板鰭式熱沉於各種矩形外殼內之熱傳特性,國立成功大學機械工程學系,碩士論文,2015。
[26] 邱毓絜,環狀鰭管式熱交換器之熱傳特性的數值與實驗研究,國立成功大學機械工程學系,碩士論文,2016。
[27] 張耀倫,H型單管板鰭管式熱交換器的混合對流熱流特性之研究,國立成功大學機械工程學系,碩士論文,2018。
[28] Q. Chen and W. Xu, A zero-equation turbulence model for indoor airflow simulation, Energy and Buildings, vol. 28, pp. 137-144, 1998.
[29] V. Yakhot, S.A. Orszag, S. Thangam, T.B. Gatski and C.G. Speziale, Development of turbulence models for shear flows by a double expansion technique, Physics of Fluids A, vol. 4, pp. 1510-1520, 1992.
[30] T.H. Shih, W.W. Liou, A. Shabbir, Z. Yang and J. Zhu, A new k-ε eddy viscosity model for high Reynolds number turbulent flows - model development and validation, Computers Fluids, vol. 24(3), pp. 227-238, 1995.
[31] B.E. Launder and D.B. Spalding, The numerical computation of turbulent flows, Computer Methods in Applied Mechanics Eng., vol. 3, pp. 269-289, 1974.