| 研究生: |
曾敬驊 Tseng, Ching-Hua |
|---|---|
| 論文名稱: |
釤鈷磁鐵中有價金屬資源化之研究 Recovery utilization of valuable metals in waste SmCo magnets |
| 指導教授: |
申永輝
Shen, Yun-Hwei |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 資源工程學系 Department of Resources Engineering |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 83 |
| 中文關鍵詞: | 稀土磁鐵 、濕法冶金 、溶媒萃取 、資源化再生 |
| 外文關鍵詞: | Rare earth magnet, Hydrometallurgy, Solvent extraction, Recycling |
| 相關次數: | 點閱:108 下載:20 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究針對釤鈷磁鐵進行資源化研究,並且規劃有效的處理流程。由於釤鈷磁鐵在製造過程中因為切割、研磨、拋光等因素而產生廢料,這些廢料普遍含有釤約30-40%、鈷約50-60%以及少量的其他金屬,透過將釤鈷磁鐵廢料以浸漬、溶媒萃取等濕法冶金方式分離出釤、鈷、銅、鐵,將提供獲取戰略性資源的機會,同時也能降低廢棄物對環境的污染達到資源再利用以及永續發展之目標。本研究主軸分為浸漬溶出、金屬離子分離與純化、金屬化合物的產出之三大部分。
第一部分為釤鈷磁鐵成分組成與浸漬溶出之研究,藉由對釤鈷磁鐵進行化學成分分析並探討各項浸漬溶出之實驗參數,透過選擇性浸漬能夠達到將銅分離的效果得到最佳化浸漬。
第二部分為金屬離子分離與純化之研究,以溶媒萃取技術將浸漬液中金屬離子進行分離達到提高純度之目的。溶媒萃取流程中使用TBP進行第一階段的萃取分離,將鐵離子萃取至有機相並且釤、鈷離子保留於萃餘液中,再利用去離子水作為反萃取劑,使鐵離子藉由反萃取流程返回水相中。釤、鈷離子則是利用經由皂化反應改質的Na-D2EHPA進行第二階段萃取分離,將釤離子萃取至有機相並且鈷離子保留至萃餘液中,再利用鹽酸作為反萃取劑,將釤離子反萃取回水相。
第三部分為金屬化合物的產出之研究,透過添加草酸水溶液以及氫氧化鈉水溶液作為沉澱劑,使得分別存在於不同水溶液中的釤、鈷、鐵離子發生沉澱,最後將沉澱物利用煆燒熱處理得到氧化釤、氧化鈷、氧化鐵之產物,經過檢測其純度分別為99.58%、99.52%、98.99%。
This research provides valuable metal separation and recovery processes for samarium-cobalt magnet waste. Hydrochloric acid is used and the acid concentration, liquid-to-solid ratio, temperature and reaction time are adjusted. Selective leaching is carried out under optimal parameter conditions to obtain rich samarium, cobalt and Iron leachate, Then use solvent extraction to separate the metals. First TBP is used as the extractant to separate iron ions from the leachate, the modified Na-D2EHPA extractant separate samarium from the leachate of the remaining samarium and cobalt ions. The iron and samarium ions in the above organic phase are returned to the water phase through a stripping step using deionized water and 1M hydrochloric acid, respectively. Finally the metal ions in each aqueous solution are precipitated from the aqueous solution by adding a precipitant, and the precipitate is calcination to obtain the metal oxide. The crystal structure is analyzed and purity is checked by XRD and AAS, which confirms that the product is High purity Sm2O3, Co3O4 and Fe2O3 with economic value.
[1] Bailey, G., Orefice, M., Sprecher, B., Önal, M. A. R., Herraiz, E., Dewulf, W., & Van Acker, K. (2021). Life cycle inventory of samarium-cobalt permanent magnets, compared to neodymium-iron-boron as used in electric vehicles. Journal of Cleaner Production, 286, 125294. doi: https://doi.org/10.1016/j.jclepro.2020.125294
[2] Bezzina, J. P., Ogden, M. D., Moon, E. M., & Soldenhoff, K. L. (2018). REE behavior and sorption on weak acid resins from buffered media. Journal of Industrial and Engineering Chemistry, 59, 440-455. doi: https://doi.org/10.1016/j.jiec.2017.11.005
[3] Binnemans, K., Jones, P. T., Blanpain, B., Van Gerven, T., Yang, Y., Walton, A., & Buchert, M. (2013). Recycling of rare earths: a critical review. Journal of Cleaner Production, 51, 1-22. doi: https://doi.org/10.1016/j.jclepro.2012.12.037
[4] Biswas, R. K., & Begum, D. A. (1998). Solvent extraction of Fe3+ from chloride solution by D2EHPA in kerosene. Hydrometallurgy, 50(2), 153-168. doi: https://doi.org/10.1016/S0304-386X(98)00048-6
[5] Coey, J. M. D. (2020). Perspective and Prospects for Rare Earth Permanent Magnets. Engineering, 6(2), 119-131. doi: https://doi.org/10.1016/j.eng.2018.11.034
[6] Cui, B., Liu, X., King, A. H., Ouyang, G., Nlebedim, C. I., & Cui, J. (2020). Overcoming mechanical fragility in Sm-Co permanent magnet materials. Acta Materialia, 196, 528-538. doi: https://doi.org/10.1016/j.actamat.2020.06.058
[7] Cui, L., Cheng, F., & Zhou, J. (2016). Preparation of high purity AlCl3·6H2O crystals from coal mining waste based on iron(III) removal using undiluted ionic liquids. Separation and Purification Technology, 167, 45-54. doi: https://doi.org/10.1016/j.seppur.2016.04.046
[8] Dashti, S., Sadri, F., Shakibania, S., Rashchi, F., & Ghahreman, A. (2021). Separation and solvent extraction of rare earth elements (Pr, Nd, Sm, Eu, Tb, and Er) using TBP and Cyanex 572 from a chloride medium. Minerals Engineering, 161, 106694. doi: https://doi.org/10.1016/j.mineng.2020.106694
[9] Dent, P. C. (2012). Rare earth elements and permanent magnets (invited). Journal of Applied Physics, 111.
[10] El-Hefny, N. E., El-Nadi, Y. A., & Daoud, J. A. (2010). Equilibrium and mechanism of samarium extraction from chloride medium using sodium salt of CYANEX 272. Separation and Purification Technology, 75(3), 310-315. doi: https://doi.org/10.1016/j.seppur.2010.08.020
[11] Freiser, H., & Freiser, M. (1992). Concepts & Calculations in Analytical Chemistry, Featuring the Use of Excel: CRC Press.
[12] Harris, I. R., & Jewell, G. W. (2012). 19 - Rare-earth magnets: properties, processing and applications. In J. A. Kilner, S. J. Skinner, S. J. C. Irvine, & P. P. Edwards (Eds.), Functional Materials for Sustainable Energy Applications (pp. 600-639): Woodhead Publishing.
[13] Hu, Z., Zhang, T., Lv, L., Chen, Y., Zhong, B., & Tang, S. (2021). Extraction performance and mechanism of TBP in the separation of Fe3+ from wet-processing phosphoric acid. Separation and Purification Technology, 272, 118822. doi: https://doi.org/10.1016/j.seppur.2021.118822
[14] Jin, Y., Ma, Y., Weng, Y., Jia, X., & Li, J. (2014). Solvent extraction of Fe3+ from the hydrochloric acid route phosphoric acid by D2EHPA in kerosene. Journal of Industrial and Engineering Chemistry, 20(5), 3446-3452. doi: https://doi.org/10.1016/j.jiec.2013.12.033
[15] Jordens, A., Cheng, Y. P., & Waters, K. E. (2013). A review of the beneficiation of rare earth element bearing minerals. Minerals Engineering, 41, 97-114. doi: https://doi.org/10.1016/j.mineng.2012.10.017
[16] Judge, W. D., & Azimi, G. (2020). Recent progress in impurity removal during rare earth element processing: A review. Hydrometallurgy, 196, 105435. doi: https://doi.org/10.1016/j.hydromet.2020.105435
[17] Lorenz, T., & Bertau, M. (2020). Recycling of rare earth elements from SmCo5-Magnets via solid-state chlorination. Journal of Cleaner Production, 246, 118980. doi: https://doi.org/10.1016/j.jclepro.2019.118980
[18] Meija, J., Coplen, T. B., Berglund, M., Brand, W. A., Bièvre, P. D., Gröning, M., . . . Prohaska, T. (2016). Atomic weights of the elements 2013 (IUPAC Technical Report). Pure and Applied Chemistry, 88(3), 265-291. doi: doi:10.1515/pac-2015-0305
[19] Meng, Q., Zhang, Y., & Dong, P. (2018). A combined process for cobalt recovering and cathode material regeneration from spent LiCoO2 batteries: Process optimization and kinetics aspects. Waste Management, 71, 372-380. doi: https://doi.org/10.1016/j.wasman.2017.10.030
[20] Mishra, B. B., & Devi, N. (2020). D2EHPA is a potential extractant for extraction of europium and samarium from chloride medium. Materials Today: Proceedings, 30, 254-257. doi: https://doi.org/10.1016/j.matpr.2020.01.355
[21] Nusheh, M., Ahuett-Garza, H., & Arrambide, A. (2012). Recent researches in metallurgical engineering: from extraction to forming: BoD–Books on Demand.
[22] Orefice, M., Audoor, H., Li, Z., & Binnemans, K. (2019). Solvometallurgical route for the recovery of Sm, Co, Cu and Fe from SmCo permanent magnets. Separation and Purification Technology, 219, 281-289. doi: https://doi.org/10.1016/j.seppur.2019.03.029
[23] Page, M. J., Soldenhoff, K., & Ogden, M. D. (2017). Comparative study of the application of chelating resins for rare earth recovery. Hydrometallurgy, 169, 275-281. doi: https://doi.org/10.1016/j.hydromet.2017.02.006
[24] Popov, A. G., Golovnia, O. A., Protasov, A. V., Gaviko, V. S., Kolodkin, D. A., & Gopalan, R. (2019). Coercivity kinetics upon step annealing of sintered Sm(Co0.88–xFexCu0.09Zr0.03)7 magnets. Journal of Rare Earths, 37(10), 1059-1065. doi: https://doi.org/10.1016/j.jre.2019.04.009
[25] Pourbaix, M. (1974). Atlas of electrochemical equilibria in aqueous solution (Vol. 307).
[26] Pradhan, S., Swain, N., Prusty, S., Sahu, R. K., & Mishra, S. (2020). Role of extractants and diluents in recovery of rare earths from waste materials. Materials Today: Proceedings, 30, 239-245. doi: https://doi.org/10.1016/j.matpr.2020.01.288
[27] Pragnell, W. M., Williams, A. J., & Evans, H. E. (2009). The oxidation morphology of SmCo alloys. Journal of Alloys and Compounds, 487(1), 69-75. doi: https://doi.org/10.1016/j.jallcom.2009.07.115
[28] Qi, D. (2018). Hydrometallurgy of rare earths: extraction and separation: Elsevier.
[29] Rodewald, W. (2001). Magnets: Sintered. In K. H. J. Buschow, R. W. Cahn, M. C. Flemings, B. Ilschner, E. J. Kramer, S. Mahajan, & P. Veyssière (Eds.), Encyclopedia of Materials: Science and Technology (pp. 5126-5129). Oxford: Elsevier.
[30] Sahoo, K., Nayak, A. K., Ghosh, M. K., & Sarangi, K. (2018). Preparation of Sm2O3 and Co3O4 from SmCo magnet swarf by hydrometallurgical processing in chloride media. Journal of Rare Earths, 36(7), 725-732. doi: https://doi.org/10.1016/j.jre.2017.12.011
[31] Schmid, M. (2019). Mitigating supply risks through involvement in rare earth projects: Japan's strategies and what the US can learn. Resources Policy, 63, 101457. doi: https://doi.org/10.1016/j.resourpol.2019.101457
[32] Shang, Z., Zhang, D., Xie, Z., Wang, Y., Haseeb, M., Qiao, P., . . . Yue, M. (2021). Effects of copper and zirconium contents on microstructure and magnetic properties of Sm(Co,Fe,Cu,Zr)z magnets with high iron content. Journal of Rare Earths, 39(2), 160-166. doi: https://doi.org/10.1016/j.jre.2020.03.002
[33] Sinha, M. K., Pramanik, S., Kumari, A., Sahu, S. K., Prasad, L. B., Jha, M. K., . . . Pandey, B. D. (2017). Recovery of value added products of Sm and Co from waste SmCo magnet by hydrometallurgical route. Separation and Purification Technology, 179, 1-12. doi: https://doi.org/10.1016/j.seppur.2017.01.056
[34] Su, X., Wang, Y., Guo, X., Dong, Y., Gao, Y., & Sun, X. (2018). Recovery of Sm(III), Co(II) and Cu(II) from waste SmCo magnet by ionic liquid-based selective precipitation process. Waste Management, 78, 992-1000. doi: https://doi.org/10.1016/j.wasman.2018.07.004
[35] Swain, N., & Mishra, S. (2019). A review on the recovery and separation of rare earths and transition metals from secondary resources. Journal of Cleaner Production, 220, 884-898. doi: https://doi.org/10.1016/j.jclepro.2019.02.094
[36] Swain, N., Mishra, S., & Acharya, M. R. (2020). Hydrometallurgical route for recovery and separation of samarium (III) and cobalt (II) from simulated waste solution using tri-n-octyl phosphine oxide – A novel pathway for synthesis of samarium and cobalt oxides nanoparticles. Journal of Alloys and Compounds, 815, 152423. doi: https://doi.org/10.1016/j.jallcom.2019.152423
[37] Swain, N., Pradhan, S., & Mishra, S. (2019). Efficiency of Aliquat 336 for hydrometallurgical separation of Sm (III) and Co (II) from nitrate medium. Minerals Engineering, 139, 105872. doi: https://doi.org/10.1016/j.mineng.2019.105872
[38] Takeno, N. (2005). Atlas of Eh-pH diagrams Geological survey of Japan open file report (Vol. 419, pp. 102).
[39] Torkaman, R., Moosavian, M. A., Torab-Mostaedi, M., & Safdari, J. (2013). Solvent extraction of samarium from aqueous nitrate solution by Cyanex301 and D2EHPA. Hydrometallurgy, 137, 101-107. doi: https://doi.org/10.1016/j.hydromet.2013.04.005
[40] Tunsu, C., Petranikova, M., Gergorić, M., Ekberg, C., & Retegan, T. (2015). Reclaiming rare earth elements from end-of-life products: A review of the perspectives for urban mining using hydrometallurgical unit operations. Hydrometallurgy, 156, 239-258. doi: https://doi.org/10.1016/j.hydromet.2015.06.007
[41] U.S. Geological Survey. (2017). Mineral Commodity Summaries 2017.
[42] U.S. Geological Survey. (2018). Mineral Commodity Summaries 2018.
[43] U.S. Geological Survey. (2019). Mineral Commodity Summaries 2019.
[44] U.S. Geological Survey. (2020). Mineral Commodity Summaries 2020.
[45] U.S. Geological Survey. (2021). Mineral Commodity Summaries 2021.
[46] Wübbeke, J. (2013). Rare earth elements in China: Policies and narratives of reinventing an industry. Resources Policy, 38(3), 384-394. doi: https://doi.org/10.1016/j.resourpol.2013.05.005
[47] Wang, Y., & Zhou, C. (2002). Hydrometallurgical process for recovery of cobalt from zinc plant residue. Hydrometallurgy, 63(3), 225-234. doi: https://doi.org/10.1016/S0304-386X(01)00213-4
[48] Zhou, K., Wang, A., Zhang, D., Zhang, X., & Yang, T. (2017). Sulfuric acid leaching of SmCo alloy waste and separation of samarium from cobalt. Hydrometallurgy, 174, 66-70. doi: https://doi.org/10.1016/j.hydromet.2017.09.014
[49] 朱屯(2005)。萃取與離子交換。 北京:冶金工業出版社。
[50] 行政院環境保護署. (中華民國 106 年). 事業廢棄物採樣方法 NIEA R118.05B.
[51] 汪建民等(2014)。材料分析。 台灣:中國材料科學學會。
[52] 南条道夫. (1987). 都市鉱山開発--包括的資源観によるリサイクルシステムの位置付け. 東北大学選鉱製錬研究所彙報, 43(2), p239-251.