| 研究生: |
蘇亭儒 Su, Ting-Ju |
|---|---|
| 論文名稱: |
多重協定標籤交換光網路中動態改變標籤碼以增進流量適應性與網路安全性之研究 Studies on Reconfiguring Composite Signature Labels to Adapt to Packets Traffic and to Combat with Eavesdroppers in Optical-MPLS Networks |
| 指導教授: |
黃振發
Huang, Jen-Fa |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電腦與通信工程研究所 Institute of Computer & Communication Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 英文 |
| 論文頁數: | 57 |
| 中文關鍵詞: | 多重協定標籤交換 、最大長度序列碼 、頻域振幅編碼 、標籤堆疊 |
| 外文關鍵詞: | Multi-protocol Label Switching (MPLS), maximal-length sequence (M-sequence), spectral-amplitude coding (SAC) |
| 相關次數: | 點閱:125 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由於新的應用技術廣泛實行於網際網路,例如網際協議通話技術及網路協定電視等,使得使用者對於高頻寬的需求與日俱增。多重協定標籤交換在區域網路已經引起相當大的關注。MPLS是一種整合了標籤交換架構與網路層路由機制的技術,最基本的概念是將進入MPLS網路的封包配置一個固定長度的標籤,在MPLS網路中,封包根據標籤做傳送,由標籤來決定封包在網路上的路徑。在MPLS裡,封包在網路層的分析僅進行一次,接著每一個封包被分配一組堆疊的標籤,標籤隨後由路由器做轉發決策時的檢查。
本篇論文提出一組光頻域複合標籤碼作為MPLS網路之無壅塞封包繞送。利用M序列碼為基底,建立以頻域振幅編碼格式之複合碼標籤。此複合標籤具有良好的正交性,並且與標籤堆疊架構相容。藉由於封包繞送節點的相關運算,對應於節點的標籤可從堆疊中辨認出來。
本篇論文將會分兩個部分分析,分別為:第一部分為對抗網路壅塞,這些複合碼標籤具有良好的編碼正交性,並與封包堆疊標籤相容,在不同的流量情形下,不同數量的標籤將被分配或重新配置到每個節點以進行傳遞。第二部分為網路安全方案,其中光網絡編碼器/解碼器(編解碼器)可重新配置標籤,以提高系統的編碼。我們採用動態可重構的頻域振幅編碼來對抗竊聽,通過改變由M序列碼處理的編碼,以防止竊聽者竊聽。
Since the implementation of new applications use in a wide range of Internet, such as Voice over Internet Protocol (VoIP) and Internet Protocol Television (IPTV), makes the user to increasing demand for high-bandwidth. Multi-protocol Label Switching (MPLS) in the LAN (local-area networks) has attracted considerable attention. MPLS is a technology that combined label switching architecture and network layer routing mechanism. The most basic concept is to configure a fixed-length labels for the packets enter the MPLS network, packet transfer according to the label, made from the label to determine the packet on the web path. In other words, the label can determine the label switching path in the network. In MPLS, the packets in the network layer only analysis once, and then each packet is assigned a set of stacked labels, then check the label forwarding decisions made by the router.
In this thesis, we construct a composite label sets for optical MPLS network. Relatively prime lengths maximal-length (M-sequence) codes are taken to compose into spectral-amplitude coding (SAC) labels. These composite M-sequence labels possess good orthogonality and are compatible with packet labels stacking. With correlation subtraction scheme in packet routing node, local node label can be identified from the stacked labels.
In this study, we will analyze the performance of two parts. Firstly, we adapt to packets traffic, these composite labels possess good coding orthogonality and are compatible with packet labels stacking. We will investigate packets routing over heavy traffic and light traffic cases on OMPLS network routing. In these extreme traffic conditions, packets arrive at the same time and in the same path, different number of labels will be allocated or reconfigured for each passing node. Secondly, we propose a network security scheme in which optical network coder/decoders (codecs) can reconfigure signature key to enhance system confidentiality for MPLS transmissions. We adopt a dynamic reconfigurable mechanism over the SAC scheme to counter eavesdropping. We compose relatively prime-length M-sequence codes into composite signature code sets that govern reconfigurable network codecs by changing signature codes to protect against eavesdropping.
[1] Z. Wei, H. Ghafouri-Shiraz, "IP routing by an optical spectral amplitude-coding CDMA network," IEE Proceedings--Commun. vol. 149, no. 56, pp. 265-269, 2002.
[2] A. Stok and E.H. Sargent, “The role of optical CDMA in access networks,” IEEE Commun. Mag., vol. 40, no. 9, pp. 83–87, Sept. 2002.
[3] T.H. Shake, “Security performance of optical CDMA against eavesdropping,” IEEE J. Lightwave Technol., vol. 23, no. 2, pp. 655–670, Feb. 2005.
[4] M.L.F. Abbade, L.A. Fossaluzza Jr., C.A. Messani, G.M. Taniguti, E.A.M. Fagotto, and I.E. Fonseca, “All-Optical Cryptography through Spectral Amplitude and Delay Encoding,” Journal of Microwaves, Optoelectronics and Electromagnetic Applications, vol.12, no.2, São Caetano do Sul, Dec. 2013.
[5] C.C. Yang, J.F. Huang, and S.P. Tseng, “Optical CDMA network codecs Structured with M-sequence Codes over Waveguide-Grating Router,” IEEE Photon. Technol. Lett., vol. 16, no. 2, pp. 641–643, Feb. 2005.
[6] J.F. Huang, K.S. Chen, Y.C. Lin, and C.Y. Li, “Reconfiguring Waveguide-Gratings-based M-Signature Codecs to Enhance OCDMA Network Confidentiality,” Optics Communications, vol. 313C, pp. 223-230, Feb. 2014.
[7] M.J. O’Mahony, D. Simeonidou, D.K. Hunter, and A. Tzanakaki, “The application of optical packet switching in future communication networks,” IEEE Commun. Mag. vol. 39, no. 3, pp. 128–135, Mar. 2001.
[8] H. Mrabet, I. Dayoub, R. Attia, and S. Haxha, "Performance Improving of OCDMA System Using 2-D Optical Codes With Optical SIC Receiver," IEEE J. Lightwave Technology, vol. 27, no. 21, pp. 4744-4753, Nov. 2009.
[9] C. Habib, V. Baby, L.R. Chen, A. Delisle-Simard, and S. LaRochelle, "All-Optical Swapping of Spectral Amplitude Code Labels Using Nonlinear Media and Semiconductor Fiber Ring Lasers," IEEE Journal of Selected Topics in Quantum Electronics, vol. 14, no. 3, pp. 879-888, May-June 2008.
[10] M. Pióro, A. Myslek, A. Jüttner, J. Harmatos, Á. Szentesi, “Topological Design of MPLS Networks,” Global Telecommunications Conference, GLOBECOM ’01.IEEE, vol. 1, 2001.
[11] S. Kumar Das, P. Venkataram, J. Biswas, “MPLS-BGP based LSP setup techniques,” the 28th Annual IEEE International Conference on Local Computer Networks, LCN 2003.
[12] U. Black, MPLS and Label Switching Networks, 2nd ed., Englewood Cliffs, NJ: Prentice-Hall, 2002.
[13] J.B. Rosas-Fernandez, S. Ayotte, L.A. Rusch, and S. LaRochelle, “Ultrafast Forwarding Architecture Using a Single Optical Processor for Multiple SAC-Label Recognition Based on FWM,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 14, no. 3,pp.868-878, May-June 2008.
[14] C.C. Yang, J.F Huang, and T.C. Hsu, “Differentiated Service Provision in Optical CDMA Network Using Power Control,” IEEE Photon. Technol. Lett., vol.20, no.20, pp. 1664-1666, Oct. 2008.
[15] M. J. O’Mahony, D. Simeonidou, D. K. Hunter, and A. Tzanakaki, “The application of optical packet switching in future communication networks,” IEEE Commun. Mag., vol. 39, no. 3, pp. 128–135, Mar. 2001.
[16] B.B. Wu and E.E. Narimanov, “A method for secure communications over a public fiber-optical network,” Optics Express, vol. 14, no. 9, pp. 3738-3751, May 2006.
[17] J.F. Huang, S.H. Meng, and Y.C. Lin, "Securing optical Code-Division Multiple-Access Networks with a Post-Switching Coding Scheme of Signature Reconfiguration," Optical Engineering, vol. 53(11), pp. 116101-1 ~ 116101-11, Nov. 2014.
[18] P.R. Prucnal, M.P. Fok, Y. Deng, and Z. Wang, “Physical layer security in fiber-optic networks using optical signal processing,” in Optical Transmission Systems, Switching, and Subsystems VII, edited by Dominique Chiaroni, Proc. of SPIE-OSA-IEEE Asia Communications and Photonics, 2009.
[19] T.H. Shake, “Security performance of optical CDMA against eavesdropping,” J. Lightwave Technol., vol. 23, no. 2, pp. 655–670, Feb. 2005.
校內:2018-07-01公開