簡易檢索 / 詳目顯示

研究生: 楊杭哲
Yang, Hang-Che
論文名稱: Sp1在有絲分裂期被CDK1高度磷酸化之機轉及其DNA結合親和力之探討
Mechanism and Function of Sp1 Hyperphosphorylation by CDK1 in its DNA Binding Activity during Mitosis
指導教授: 洪建中
Hung, Jan-Jong
學位類別: 碩士
Master
系所名稱: 生物科學與科技學院 - 生物資訊與訊息傳遞研究所
Insitute of Bioinformatics and Biosignal Transduction
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 60
中文關鍵詞: 有絲分裂期高度磷酸化
外文關鍵詞: Sp1, CDK1
相關次數: 點閱:97下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Sp1是一個廣泛存在於哺乳類動物細胞內的一個轉錄調控因子,它可以調控細胞內許多生理功能。過去對於Sp1的研究發現Sp1的後轉譯修飾可以調控Sp1的功能,而其中一個重要的後轉譯修飾為磷酸化,Sp1可以在絲氨酸或蘇氨酸上被磷酸化。在實驗室之前的研究發現Sp1在Thr739的位置會被磷酸化,我們發現在此時其DNA結合親和力會下降。此外我們也發現一個獨特的異構酶Pin1在有絲分裂期會與Sp1有交互作用,因此我們假設Sp1或許會受到Pin1的作用使構形改變,進而調控Sp1之DNA結合親和力。在DAPA分析中,可以看到WT和T739D突變的Sp1在有無Pin1的情況下,其DNA結合親和力沒有差異。接著在細胞外激酶磷酸化實驗中,發現Sp1在Pin1存在時其磷酸化程度會增加。因此Pin1可能可以調控Sp1的構形,使得CDK1可以用auto-priming的方式對Sp1進行過度磷酸化,此過度磷酸化可能是使Sp1之DNA結合親和力下降的原因。接下來我們利用定點突變將可能是過度磷酸化位置的絲氨酸或蘇氨酸突變為丙氨酸。在細胞外激酶磷酸化實驗中發現Sp1 S720A-6A的磷酸化會降低,因此可能的過度磷酸化位置就包含在其中。這個研究可以讓我們更加了解Sp1之DNA結合親和力以及轉錄調控因子在細胞週期進行中離開染色質之調控。

    The transcription factor Sp1 is ubiquitously expressed in mammalian cells and is important in a variety of physiological processes. Previous studies have revealed that the posttranslational modifications of Sp1 could alter its transcriptional activity, DNA-binding affinity, or protein stability. Sp1 can be phosphorylated on serine or threonine residues. Phosphorylation of Sp1 can regulate functions of Sp1 in different physiological condition. Our previous studies indicated that Sp1 can be phosphorylated at Thr739. Sp1 might loss DNA bind affinity after being phosphorylated at Thr739 during mitosis. In addition, our preliminary data indicated the Pin1, a unique peptidyl-prolyl cis/trans isomerase, could interact with phosphor-Sp1 in mitotic stage. Therefore, we suppose that DNA binding activity of Sp1 might be regulated through pin1-dependent manner. In the DAPA assay, results indicated that DNA binding affinity is no different between Sp1 and Sp1 T739D mutant in the presence or absence Pin1. These results demonstrated that T739 phosphorylation or the Pin1 recruitment does not decrease the DNA binding activity of Sp1 significantly. In the in vitro kinase assay, we found an increased signal caused by phosphorylation in the presence of Pin1. Therefore Pin1 might modulate Sp1 conformation that result in CDK1 “auto-priming”, which leads further phosphorylation of Sp1. This hyperphosphorylation of Sp1 might decrease the DNA binding activity of Sp1. Next we focused on the hyperphosphorylation site(s) of Sp1 by CDK1 in the presence of Pin1. By using site-directed mutagenesis, we constructed the serine/threonine to alanine mutant on possible hyperphosphorylation site(s) of Sp1. In the in vitro kinase assay, we found that the phosphorylation of Sp1 was decreased in S720A-6A mutant. This data suggests that the key hyperphosphorylation site of Sp1 might locate between S720 and T739. This study will let us understand the regulation of DNA binding activity of Sp1 much clearly, and more transcription factors that might bind to and release from chromosome via this pathway during cell cycle progression.

    中文摘要 I 英文摘要 II 致謝 III 目錄 IV 第一章 序論 1 第二章 實驗材料 9 第三章 實驗方法 13 第四章 實驗結果 28 第五章 實驗討論 34 參考文獻 39 附圖 45

    Abdelrahim, M. & Safe, S. Cyclooxygenase-2 inhibitors decrease vascular endothelial growth factor expression in colon cancer cells by enhanced degradation of Sp1 and Sp4 proteins. Mol. Pharmacol 68, 317-329 (2005).
    Armstrong, S.A., Barry, D.A., Leggett, R.W. & Mueller, C.R. Casein kinase II-mediated phosphorylation of the C terminus of Sp1 decreases its DNA binding activity. J. Biol. Chem 272, 13489-13495 (1997).
    Bigger, C.B., Melnikova, I.N. & Gardner, P.D. Sp1 and Sp3 Regulate Expression of the Neuronal Nicotinic Acetylcholine Receptor β4 Subunit Gene. Journal of Biological Chemistry 272, 25976 -25982 (1997).
    Bonello, M.R. & Khachigian, L.M. Fibroblast growth factor-2 represses platelet-derived growth factor receptor-alpha (PDGFR-alpha) transcription via ERK1/2-dependent Sp1 phosphorylation and an atypical cis-acting element in the proximal PDGFR-alpha promoter. J. Biol. Chem 279, 2377-2382 (2004).
    Bouwman, P. & Philipsen, S. Regulation of the activity of Sp1-related transcription factors. Molecular and Cellular Endocrinology 195, 27-38 (2002).
    Canaff, L., Zhou, X. & Hendy, G.N. The proinflammatory cytokine, interleukin-6, up-regulates calcium-sensing receptor gene transcription via Stat1/3 and Sp1/3. J. Biol. Chem 283, 13586-13600 (2008).
    Chiang, C.M. & Roeder, R.G. Cloning of an intrinsic human TFIID subunit that interacts with multiple transcriptional activators. Science 267, 531-536 (1995).
    Chu, S. & Ferro, T.J. Sp1: Regulation of gene expression by phosphorylation. Gene 348, 1-11 (2005).
    Chu, S., Cockrell, C.A. & Ferro, T.J. Expression of alpha-ENaC2 is dependent on an upstream Sp1 binding motif and is modulated by protein phosphatase 1 in lung epithelial cells. Biochem. Biophys. Res. Commun 303, 1159-1168 (2003).
    Chuang JY, Wang YT, Yeh SH, Liu YW, Chang WC, Hung JJ Phosphorylation by c-Jun NH2-terminal Kinase 1 Regulates the Stability of Transcription Factor Sp1 during Mitosis. MBC 19(3):1139-1151 (2008).
    Chun, R.F., Semmes, O.J., Neuveut, C. & Jeang, K.T. Modulation of Sp1 phosphorylation by human immunodeficiency virus type 1 Tat. J. Virol 72, 2615-2629 (1998).
    Colgan, D.F., Murthy, K.G., Prives, C. & Manley, J.L. Cell-cycle related regulation of poly(A) polymerase by phosphorylation. Nature 384, 282-285 (1996).
    Courey, A.J. & Tjian, R. Analysis of Sp1 in vivo reveals mutiple transcriptional domains, including a novel glutamine-rich activation motif. Cell 55, 887-898 (1988).
    Courey, A.J., Holtzman, D.A., Jackson, S.P. & Tjian, R. Synergistic activation by the glutamine-rich domains of human transcription factor Sp1. Cell 59, 827-836 (1989).
    E Deniaud, J Baguet, A-L Mathieu, G Pagès, J Marvel, and Y Leverrier Overexpression of Sp1 transcription factor induces apoptosis. Oncogene 25, 7096-7105 (2006).
    Dynan, W.S. & Tjian, R. The promoter-specific transcription factor Sp1 binds to upstream sequences in the SV40 early promoter. Cell 35, 79-87 (1983).
    Emili, A., Greenblatt, J. & Ingles, C.J. Species-specific interaction of the glutamine-rich activation domains of Sp1 with the TATA box-binding protein. Mol. Cell. Biol 14, 1582-1593 (1994).
    Firestone, G.L. & Bjeldanes, L.F. Indole-3-Carbinol and 3-3’-Diindolylmethane Antiproliferative Signaling Pathways Control Cell-Cycle Gene Transcription in Human Breast Cancer Cells by Regulating Promoter–Sp1 Transcription Factor Interactions. The Journal of Nutrition 133, 2448S -2455S (2003).
    Fojas de Borja, P., Collins, N.K., Du, P., Azizkhan-Clifford, J. & Mudryj, M. Cyclin A-CDK phosphorylates Sp1 and enhances Sp1-mediated transcription. EMBO J 20, 5737-5747 (2001).
    Gebara, M.M., Sayre, M.H. & Corden, J.L. Phosphorylation of the carboxy-terminal repeat domain in RNA polymerase II by cyclin-dependent kinases is sufficient to inhibit transcription. J. Cell. Biochem 64, 390-402 (1997).
    Han, I. & Kudlow, J.E. Reduced O glycosylation of Sp1 is associated with increased proteasome susceptibility. Mol. Cell. Biol 17, 2550-2558 (1997).
    Hanahan, D. & Weinberg, R.A. The Hallmarks of Cancer. Cell 100, 57-70 (2000).
    He, S. & Davie, J.R. Sp1 and Sp3 foci distribution throughout mitosis. J. Cell. Sci 119, 1063-1070 (2006).
    Hung, J.-J., Wang, Y.-T. & Chang, W.-C. Sp1 deacetylation induced by phorbol ester recruits p300 to activate 12(S)-lipoxygenase gene transcription. Mol. Cell. Biol 26, 1770-1785 (2006).
    Jackson, S.P. & Tjian, R. O-glycosylation of eukaryotic transcription factors: implications for mechanisms of transcriptional regulation. Cell 55, 125-133 (1988).
    Jackson, S.P., MacDonald, J.J., Lees-Miller, S. & Tjian, R. GC box binding induces phosphorylation of Sp1 by a DNA-dependent protein kinase. Cell 63, 155-165 (1990).
    Kadonaga, J.T., Carner, K.R., Masiarz, F.R. & Tjian, R. Isolation of cDNA encoding transcription factor Sp1 and functional analysis of the DNA binding domain. Cell 51, 1079-1090 (1987).
    Kudlow, J.E. Post-translational modification by O-GlcNAc: another way to change protein function. J. Cell. Biochem 98, 1062-1075 (2006).
    Loyer, P., Trembley, J.H., Katona, R., Kidd, V.J. & Lahti, J.M. Role of CDK/cyclin complexes in transcription and RNA splicing. Cellular Signalling 17, 1033-1051 (2005).
    Loyer, P., Trembley, J.H., Katona, R., Kidd, V.J. & Lahti, J.M. Role of CDK/cyclin complexes in transcription and RNA splicing. Cellular Signalling 17, 1033-1051 (2005).
    Yih-Cherng Liou, Akihide Ryo ,Han-Kuei Huang, Pei-Jung Lu, Roderick Bronson, Fumihiro Fujimori, Takafumi Uchida, Tony Hunter, and Kun Ping Lu. Loss of Pin1 function in the mouse causes phenotypes resembling cyclin D1-null phenotypes. Proceedings of the National Academy of Sciences 99, 1335 -1340 (2002).
    Lu, K.P. & Zhou, X.Z. The prolyl isomerase PIN1: a pivotal new twist in phosphorylation signalling and disease. Nat. Rev. Mol. Cell Biol 8, 904-916 (2007).
    Lu, K.P. Prolyl isomerase Pin1 as a molecular target for cancer diagnostics and therapeutics. Cancer Cell 4, 175-180 (2003).
    Ma Z, Chang MJ, Shah R, Adamski J, Zhao X and Benveniste EN. Brg-1 is required for maximal transcription of the human matrix metalloproteinase-2 gene. J. Biol. Chem 279, 46326-46334 (2004).
    Martínez-Balbás, M.A., Dey, A., Rabindran, S.K., Ozato, K. & Wu, C. Displacement of sequence-specific transcription factors from mitotic chromatin. Cell 83, 29-38 (1995).
    McDonough, P.M., Hanford, D.S., Sprenkle, A.B., Mellon, N.R. & Glembotski, C.C. Collaborative roles for c-Jun N-terminal kinase, c-Jun, serum response factor, and Sp1 in calcium-regulated myocardial gene expression. J. Biol. Chem 272, 24046-24053 (1997).
    Milanini-Mongiat, J., Pouysségur, J. & Pagès, G. Identification of two Sp1 phosphorylation sites for p42/p44 mitogen-activated protein kinases: their implication in vascular endothelial growth factor gene transcription. J. Biol. Chem 277, 20631-20639 (2002).
    Parisi, F., Wirapati, P. & Naef, F. Identifying synergistic regulation involving c-Myc and sp1 in human tissues. Nucleic Acids Res 35, 1098-1107 (2007).
    Ranganathan, R., Lu, K.P., Hunter, T. & Noel, J.P. Structural and functional analysis of the mitotic rotamase Pin1 suggests substrate recognition is phosphorylation dependent. Cell 89, 875-886 (1997).
    Reisinger, K., Kaufmann, R. & Gille, J. Increased Sp1 phosphorylation as a mechanism of hepatocyte growth factor (HGF/SF)-induced vascular endothelial growth factor (VEGF/VPF) transcription. J. Cell. Sci 116, 225-238 (2003).
    Hoon Ryu, Junghee Lee, Beatrix A. Olofsson, Aziza Mwidau, Alpaslan Deodoglu, Maria Escudero, Erik Flemington, Jane Azizkhan-Clifford, Robert J. Ferrante, and Rajiv R. Ratan. Histone deacetylase inhibitors prevent oxidative neuronal death independent of expanded polyglutamine repeats via an Sp1-dependent pathway. Proc. Natl. Acad. Sci. U.S.A 100, 4281-4286 (2003).
    Spengler, M.L. & Brattain, M.G. Sumoylation inhibits cleavage of Sp1 N-terminal negative regulatory domain and inhibits Sp1-dependent transcription. J. Biol. Chem 281, 5567-5574 (2006).
    Feng Sun, Haiyan Fang, Ruizhen Li, Tianlong Gao, Junke Zheng, Xuejin Chen, Wenqin Ying and Hui Z Sheng. Nuclear reprogramming: the zygotic transcription program is established through an “erase-and-rebuild” strategy. Cell Res 17, 117-134 (2007).
    Tan, N.Y. & Khachigian, L.M. Sp1 phosphorylation and its regulation of gene transcription. Mol. Cell. Biol 29, 2483-2488 (2009).
    Wang YT, Chuang JY, Shen MR, Yang WB, Chang WC, Hung JJ. Sumoylation of specificity protein 1 augments its degradation by changing the localization and increasing the specificity protein 1 proteolytic process. J. Mol. Biol 380, 869-885 (2008).
    Wong CF, Barnes LM, Dahler AL, Smith L, Popa C, Serewko-Auret MM, Saunders NA. E2F suppression and Sp1 overexpression are sufficient to induce the differentiation-specific marker, transglutaminase type 1, in a squamous cell carcinoma cell line. Oncogene 24, 3525-3534 (2005).
    Wulf, G., Finn, G., Suizu, F. & Lu, K.P. Phosphorylation-specific prolyl isomerization: is there an underlying theme? Nat. Cell Biol 7, 435-441 (2005).
    Yang, X., Zhang, F. & Kudlow, J.E. Recruitment of O-GlcNAc transferase to promoters by corepressor mSin3A: coupling protein O-GlcNAcylation to transcriptional repression. Cell 110, 69-80 (2002).
    Yeh, E.S. & Means, A.R. PIN1, the cell cycle and cancer. Nat. Rev. Cancer 7, 381-388 (2007).
    Zheng H, You H, Zhou XZ, Murray SA, Uchida T, Wulf G, Gu L, Tang X, Lu KP, Xiao ZX. The prolyl isomerase Pin1 is a regulator of p53 in genotoxic response. Nature 419, 849-853 (2002).
    Zhou XZ, Kops O, Werner A, Lu PJ, Shen M, Stoller G, Küllertz G, Stark M, Fischer G, Lu KP. Pin1-dependent prolyl isomerization regulates de- phosphorylation of Cdc25C and tau proteins. Mol. Cell 6, 873-883 (2000).

    下載圖示 校內:2016-08-12公開
    校外:2016-08-12公開
    QR CODE