| 研究生: |
鄭知琦 Cheng, Chih-Chi |
|---|---|
| 論文名稱: |
秋水仙素衍生物抑制星狀膠質瘤細胞生長機制之探討 Colchicine derivative as a potential anti-glioma compound |
| 指導教授: |
曾淑芬
Tzeng, Shun-Fen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
生物科學與科技學院 - 生命科學系 Department of Life Sciences |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 英文 |
| 論文頁數: | 49 |
| 中文關鍵詞: | 膠質瘤 、秋水仙素衍生物AD1 、細胞自噬 |
| 外文關鍵詞: | glioma, colchicine derivative AD1, autophagy |
| 相關次數: | 點閱:123 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
膠質瘤(Glioma)是成人之中最為惡性的腦腫瘤,一般治療方式為合併手術、放射線治療以及化療,但是患者的存活率仍然無顯著提升。秋水仙素(Colchicine)為微管蛋白的抑制物,通常被用來治療痛風,也被做為抗癌藥物的使用。過去文獻指出利用秋水仙素可用來治療乳腺癌及大腸癌,而使用秋水仙素治療膠質瘤則較少被研究,並且秋水仙素必須使用至micromole濃度才能達到抑制效果,如此高濃度對正常細胞造成毒害。本研究想探討新型秋水仙素衍生物AD1是否能夠以低濃度就能有效抑制惡性膠質瘤。我們使用兩株第四級的惡性膠質瘤細胞株:U373MG及U87MG探討秋水仙素衍生物AD1的作用。α-tubulin免疫螢光染色結果顯示AD1濃度10 nM 處理U87MG 24小時已造成明顯細胞損傷,但是10 nM並未造成明顯 U373MG細胞形態改變,AD1濃度提高至50 nM才造成明顯U373MG細胞結構上的變化。利用Trypan blue staining結果顯示,相對於控制組,AD1 濃度在10 nM 和50 nM 減少U87 MG 和U373MG細胞數目,且延長處理時間達72小時,細胞數目更明顯被抑制。更進一步利用流式細胞儀分析24小時處理AD1,U87MG 和U373MG細胞內 ROS量有明顯上升。免疫螢光染色以及西方點墨法顯示處理AD1後會使細胞自噬相關蛋白LC3I轉換成LC3II,代表細胞的自噬小體(autophagosome)增加。Acridin orange染色合併流式細胞儀分析結果說明處理AD1可以誘導細胞自噬。然而,前處理PI3K抑制劑Wortmannin以及LY294002,導致更低濃度(5 nM)的AD1造成此兩種膠質瘤細胞株細胞損傷。依目前研究結果,我們結論處理秋水仙素衍生物AD1在低濃度(10 nM-50 nM)可以導致惡性膠質瘤細胞氧化壓力上升造成細胞損傷並伴隨AD1細胞自噬的現象。
Glioblastoma is the most malignant brain tumor in adults. Conventional treatments include a combination of surgery, radiotherapy, and chemotherapy. However, the poor survival rate remains. Colchicine, one of the microtubule inhibitor, is a common therapeutical agent for gout, and also used as an antitumor drug with side effects through disrupt the microtubule structure. Accordingly, the development of its derivatives with low dose efficacy and less side effect could bring impact on anti-tumor treatment. In this study, we present the effect of a colchicine derivative so named as AD1 on U373MG and U87MG, two grade IV human glioblastoma cell lines. Through immunostaining of α-tubulin, we found that the treatment of U87MG cells with AD1 for 24 h at 10 nM, led to severe cell damage. The same observation was found in U373MG cells with AD1 at 50 nM. Trypan blue cell counting analysis showed that AD1 caused the cell death of U373MG and U87MG cells in a dose-dependent manner and AD1 repressed the cell viability of U373MG and U87MG cells for 72h. We also found that increased levels of ROS in U373MG and U87MG cells treated with AD1. Further experiments revealed that the application of AD1 increased the conversion of LC3-I to LC3-II in U373MG and U87MG cells, indicating that AD1 may induce the autophagy of the two human glioblastoma cell lines. Acridine orange staining for autophagic vesicles analyzed by flow cytometry showed that treatment with AD1 induced the autophagy in U373MG and U87MG cells. However, pretreatment with PI3K inhibitor, Wortmannin and LY294002, resulted in cell damage with AD1 at 5 nM in U373MG and U87MG cells. Taken together, we conclude that treatment with AD1 causes the glioblastoma cells death along with the occurrence of autophagic process.
Adler, Y., Y. Finkelstein, J. Guindo, A. Rodriguez de la Serna, Y. Shoenfeld, A. Bayes-Genis, A. Sagie, A. Bayes de Luna, and D.H. Spodick. 1998. Colchicine treatment for recurrent pericarditis. A decade of experience. Circulation. 97:2183-2185.
Ahern, M.J., C. Reid, T.P. Gordon, M. McCredie, P.M. Brooks, and M. Jones. 1987. Does colchicine work? The results of the first controlled study in acute gout. Australian and New Zealand journal of medicine. 17:301-304.
Bedard, K., and K.H. Krause. 2007. The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiological reviews. 87:245-313.
Bhattacharyya, B., D. Panda, S. Gupta, and M. Banerjee. 2008. Anti-mitotic activity of colchicine and the structural basis for its interaction with tubulin. Medicinal research reviews. 28:155-183.
Biggers, J.W., T. Nguyen, X. Di, J.T. Gupton, S.C. Henderson, S.M. Emery, M. Alotaibi, K.L. White, Jr., R. Brown, J. Almenara, and D.A. Gewirtz. 2013. Autophagy, cell death and sustained senescence arrest in B16/F10 melanoma cells and HCT-116 colon carcinoma cells in response to the novel microtubule poison, JG-03-14. Cancer chemotherapy and pharmacology. 71:441-455.
Brat, D.J., R.A. Prayson, T.C. Ryken, and J.J. Olson. 2008. Diagnosis of malignant glioma: role of neuropathology. Journal of neuro-oncology. 89:287-311.
Craig, D.H., C.R. Owen, W.C. Conway, M.F. Walsh, C. Downey, and M.D. Basson. 2008. Colchicine inhibits pressure-induced tumor cell implantation within surgical wounds and enhances tumor-free survival in mice. The Journal of clinical investigation. 118:3170-3180.
De Vincenzo, R., G. Scambia, C. Ferlini, M. Distefano, P. Filippini, A. Riva, E. Bombardelli, D. Pocar, M.L. Gelmi, P. Benedetti Panici, and S. Mancuso. 1998. Antiproliferative activity of colchicine analogues on MDR-positive and MDR-negative human cancer cell lines. Anti-cancer drug design. 13:19-33.
Drew, L., R.L. Fine, T.N. Do, G.P. Douglas, and D.P. Petrylak. 2002. The novel antimicrotubule agent cryptophycin 52 (LY355703) induces apoptosis via multiple pathways in human prostate cancer cells. Clinical cancer research : an official journal of the American Association for Cancer Research. 8:3922-3932.
Dumontet, C., and B.I. Sikic. 1999. Mechanisms of action of and resistance to antitubulin agents: microtubule dynamics, drug transport, and cell death. Journal of clinical oncology : official journal of the American Society of Clinical Oncology. 17:1061-1070.
Edinger, A.L., and C.B. Thompson. 2004. Death by design: apoptosis, necrosis and autophagy. Current opinion in cell biology. 16:663-669.
Elmore, S. 2007. Apoptosis: a review of programmed cell death. Toxicologic pathology. 35:495-516.
Endo, K., M. Mizuguchi, A. Harata, G. Itoh, and K. Tanaka. 2010. Nocodazole induces mitotic cell death with apoptotic-like features in Saccharomyces cerevisiae. FEBS letters. 584:2387-2392.
Espert, L., M. Denizot, M. Grimaldi, V. Robert-Hebmann, B. Gay, M. Varbanov, P. Codogno, and M. Biard-Piechaczyk. 2006. Autophagy is involved in T cell death after binding of HIV-1 envelope proteins to CXCR4. The Journal of clinical investigation. 116:2161-2172.
Finkelstein, Y., S.E. Aks, J.R. Hutson, D.N. Juurlink, P. Nguyen, G. Dubnov-Raz, U. Pollak, G. Koren, and Y. Bentur. 2010. Colchicine poisoning: the dark side of an ancient drug. Clinical toxicology. 48:407-414.
Firat, E., A. Weyerbrock, S. Gaedicke, A.L. Grosu, and G. Niedermann. 2012. Chloroquine or chloroquine-PI3K/Akt pathway inhibitor combinations strongly promote gamma-irradiation-induced cell death in primary stem-like glioma cells. PloS one. 7:e47357.
Gireesh, K.K., A. Rashid, S. Chakraborti, D. Panda, and T. Manna. 2012. CIL-102 binds to tubulin at colchicine binding site and triggers apoptosis in MCF-7 cells by inducing monopolar and multinucleated cells. Biochemical Pharmacology. 84:633-645.
Golstein, P., and G. Kroemer. 2007. Cell death by necrosis: towards a molecular definition. Trends in biochemical sciences. 32:37-43.
Gozuacik, D., and A. Kimchi. 2004. Autophagy as a cell death and tumor suppressor mechanism. Oncogene. 23:2891-2906.
Haas-Kogan, D., N. Shalev, M. Wong, G. Mills, G. Yount, and D. Stokoe. 1998. Protein kinase B (PKB/Akt) activity is elevated in glioblastoma cells due to mutation of the tumor suppressor PTEN/MMAC. Current biology : CB. 8:1195-1198.
Hao, J., Y. Pei, G. Ji, W. Li, S. Feng, and S. Qiu. 2011. Autophagy is induced by 3beta-O-succinyl-lupeol (LD9-4) in A549 cells via up-regulation of Beclin 1 and down-regulation mTOR pathway. European journal of pharmacology. 670:29-38.
Hoyer-Hansen, M., and M. Jaattela. 2007. Connecting endoplasmic reticulum stress to autophagy by unfolded protein response and calcium. Cell death and differentiation. 14:1576-1582.
Huang, T.T., S.M. Sarkaria, T.F. Cloughesy, and P.S. Mischel. 2009. Targeted therapy for malignant glioma patients: lessons learned and the road ahead. Neurotherapeutics : the journal of the American Society for Experimental NeuroTherapeutics. 6:500-512.
Jiang, H., E.J. White, C. Conrad, C. Gomez-Manzano, and J. Fueyo. 2009. Autophagy pathways in glioblastoma. Methods in enzymology. 453:273-286.
Ju, J.S., A.S. Varadhachary, S.E. Miller, and C.C. Weihl. 2010. Quantitation of "autophagic flux" in mature skeletal muscle. Autophagy. 6:929-935.
Jung, C.H., S.H. Ro, J. Cao, N.M. Otto, and D.H. Kim. 2010. mTOR regulation of autophagy. FEBS letters. 584:1287-1295.
Kabeya, Y., N. Mizushima, T. Ueno, A. Yamamoto, T. Kirisako, T. Noda, E. Kominami, Y. Ohsumi, and T. Yoshimori. 2000. LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. The EMBO journal. 19:5720-5728.
Kanu, O.O., A. Mehta, C. Di, N. Lin, K. Bortoff, D.D. Bigner, H. Yan, and D.C. Adamson. 2009. Glioblastoma multiforme: a review of therapeutic targets. Expert opinion on therapeutic targets. 13:701-718.
Kaushik, S., and A.M. Cuervo. 2008. Chaperone-mediated autophagy. Methods in molecular biology (Clifton, N.J.). 445:227-244.
Klionsky, D.J. 2005. The molecular machinery of autophagy: unanswered questions. Journal of cell science. 118:7-18.
Knizhnik, A.V., W.P. Roos, T. Nikolova, S. Quiros, K.H. Tomaszowski, M. Christmann, and B. Kaina. 2013. Survival and death strategies in glioma cells: autophagy, senescence and apoptosis triggered by a single type of temozolomide-induced DNA damage. PloS one. 8:e55665.
Kubota, N., S. Okada, T. Inada, K. Ohnishi, and T. Ohnishi. 2000. Wortmannin sensitizes human glioblastoma cell lines carrying mutant and wild type TP53 gene to radiation. Cancer letters. 161:141-147.
Lal, B., C.R. Goodwin, Y. Sang, C.A. Foss, K. Cornet, S. Muzamil, M.G. Pomper, J. Kim, and J. Laterra. 2009. EGFRvIII and c-Met pathway inhibitors synergize against PTEN-null/EGFRvIII+ glioblastoma xenografts. Molecular cancer therapeutics. 8:1751-1760.
Lee, H.S., B.H. Daniels, E. Salas, A.W. Bollen, J. Debnath, and M. Margeta. 2012. Clinical utility of LC3 and p62 immunohistochemistry in diagnosis of drug-induced autophagic vacuolar myopathies: a case-control study. PloS one. 7:e36221.
Liu, W., P. Sun, L. Yang, J. Wang, L. Li, and J. Wang. 2010. Assay of glioma cell responses to an anticancer drug in a cell-based microfluidic device. Microfluid Nanofluid. 9:717-725.
Louis, D.N., H. Ohgaki, O.D. Wiestler, W.K. Cavenee, P.C. Burger, A. Jouvet, B.W. Scheithauer, and P. Kleihues. 2007. The 2007 WHO ClassiWcation of Tumours of the Central Nervous System. Acta Neuropathol.
Lowe, S.W., and A.W. Lin. 2000. Apoptosis in cancer. Carcinogenesis. 21:485-495.
Lum, J.J., D.E. Bauer, M. Kong, M.H. Harris, C. Li, T. Lindsten, and C.B. Thompson. 2005. Growth factor regulation of autophagy and cell survival in the absence of apoptosis. Cell. 120:237-248.
Maiuri, M.C., E. Zalckvar, A. Kimchi, and G. Kroemer. 2007. Self-eating and self-killing: crosstalk between autophagy and apoptosis. Nature reviews. Molecular cell biology. 8:741-752.
Mazure, N.M., and J. Pouyssegur. 2010. Hypoxia-induced autophagy: cell death or cell survival? Current opinion in cell biology. 22:177-180.
Mazzoletti, M., F. Bortolin, L. Brunelli, R. Pastorelli, S. Di Giandomenico, E. Erba, P. Ubezio, and M. Broggini. 2011. Combination of PI3K/mTOR inhibitors: antitumor activity and molecular correlates. Cancer research. 71:4573-4584.
Mizushima, N. 2007. Autophagy: process and function. Genes & development. 21:2861-2873.
Montseny, J.J., A. Meyrier, and R.K. Gherardi. 1996. Colchicine toxicity in patients with chronic renal failure. Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association. 11:2055-2058.
Murphy, M.P. 2009. How mitochondria produce reactive oxygen species. The Biochemical journal. 417:1-13.
Nuki, G. 2008. Colchicine: its mechanism of action and efficacy in crystal-induced inflammation. Current rheumatology reports. 10:218-227.
Ogata, M., S. Hino, A. Saito, K. Morikawa, S. Kondo, S. Kanemoto, T. Murakami, M. Taniguchi, I. Tanii, K. Yoshinaga, S. Shiosaka, J.A. Hammarback, F. Urano, and K. Imaizumi. 2006. Autophagy is activated for cell survival after endoplasmic reticulum stress. Molecular and cellular biology. 26:9220-9231.
Ouyang, L., Z. Shi, S. Zhao, F.T. Wang, T.T. Zhou, B. Liu, and J.K. Bao. 2012. Programmed cell death pathways in cancer: a review of apoptosis, autophagy and programmed necrosis. Cell proliferation. 45:487-498.
Paglin, S., T. Hollister, T. Delohery, N. Hackett, M. McMahill, E. Sphicas, D. Domingo, and J. Yahalom. 2001. A novel response of cancer cells to radiation involves autophagy and formation of acidic vesicles. Cancer research. 61:439-444.
Perry, J., M. Okamoto, M. Guiou, K. Shirai, A. Errett, and A. Chakravarti. 2012. Novel therapies in glioblastoma. Neurology research international. 2012:428565.
Qu, X., J. Yu, G. Bhagat, N. Furuya, H. Hibshoosh, A. Troxel, J. Rosen, E.L. Eskelinen, N. Mizushima, Y. Ohsumi, G. Cattoretti, and B. Levine. 2003. Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene. The Journal of clinical investigation. 112:1809-1820.
Ravikumar, B., Z. Berger, C. Vacher, C.J. O'Kane, and D.C. Rubinsztein. 2006. Rapamycin pre-treatment protects against apoptosis. Human molecular genetics. 15:1209-1216.
Reardon, D.A., and P.Y. Wen. 2006. Therapeutic advances in the treatment of glioblastoma: rationale and potential role of targeted agents. The oncologist. 11:152-164.
Rikiishi, H. 2012. Novel Insights into the Interplay between Apoptosis and Autophagy. International Journal of Cell Biology. 2012.
Risinger, A.L., F.J. Giles, and S.L. Mooberry. 2009. Microtubule dynamics as a target in oncology. Cancer treatment reviews. 35:255-261.
Sahu, R., S. Kaushik, C.C. Clement, E.S. Cannizzo, B. Scharf, A. Follenzi, I. Potolicchio, E. Nieves, A.M. Cuervo, and L. Santambrogio. 2011. Microautophagy of cytosolic proteins by late endosomes. Developmental cell. 20:131-139.
Scherz-Shouval, R., and Z. Elazar. 2007. ROS, mitochondria and the regulation of autophagy. Trends in cell biology. 17:422-427.
Sonoda, Y., T. Ozawa, K.D. Aldape, D.F. Deen, M.S. Berger, and R.O. Pieper. 2001. Akt pathway activation converts anaplastic astrocytoma to glioblastoma multiforme in a human astrocyte model of glioma. Cancer research. 61:6674-6678.
Stupp, R., W.P. Mason, M.J. van den Bent, M. Weller, B. Fisher, M.J. Taphoorn, K. Belanger, A.A. Brandes, C. Marosi, U. Bogdahn, J. Curschmann, R.C. Janzer, S.K. Ludwin, T. Gorlia, A. Allgeier, D. Lacombe, J.G. Cairncross, E. Eisenhauer, R.O. Mirimanoff, R. European Organisation for, T. Treatment of Cancer Brain, G. Radiotherapy, and G. National Cancer Institute of Canada Clinical Trials. 2005. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. The New England journal of medicine. 352:987-996.
Stupp, R., M. Reni, G. Gatta, E. Mazza, and C. Vecht. 2007. Anaplastic astrocytoma in adults. Critical reviews in oncology/hematology. 63:72-80.
Tsujimoto, Y., and S. Shimizu. 2005. Another way to die: autophagic programmed cell death. Cell death and differentiation. 12 Suppl 2:1528-1534.
Viola, G., R. Bortolozzi, E. Hamel, S. Moro, P. Brun, I. Castagliuolo, M.G. Ferlin, and G. Basso. 2012. MG-2477, a new tubulin inhibitor, induces autophagy through inhibition of the Akt/mTOR pathway and delayed apoptosis in A549 cells. Biochem Pharmacol. 83:16-26.
Volbracht, C., M. Leist, S.A. Kolb, and P. Nicotera. 2001. Apoptosis in caspase-inhibited neurons. Molecular medicine. 7:36-48.
Wei, Y., S. Sinha, and B. Levine. 2008. Dual role of JNK1-mediated phosphorylation of Bcl-2 in autophagy and apoptosis regulation. Autophagy. 4:949-951.
Yousefi, S., R. Perozzo, I. Schmid, A. Ziemiecki, T. Schaffner, L. Scapozza, T. Brunner, and H.U. Simon. 2006. Calpain-mediated cleavage of Atg5 switches autophagy to apoptosis. Nature cell biology. 8:1124-1132.
Yu, L., F. Wan, S. Dutta, S. Welsh, Z. Liu, E. Freundt, E.H. Baehrecke, and M. Lenardo. 2006. Autophagic programmed cell death by selective catalase degradation. Proceedings of the National Academy of Sciences of the United States of America. 103:4952-4957.
Zhou, J., and P. Giannakakou. 2005. Targeting microtubules for cancer chemotherapy. Current medicinal chemistry. Anti-cancer agents. 5:65-71.
Zhu, Y., and L.F. Parada. 2002. The molecular and genetic basis of neurological tumours. Nature reviews. Cancer. 2:616-626.
Zhuang, W., Z. Qin, and Z. Liang. 2009. The role of autophagy in sensitizing malignant glioma cells to radiation therapy. Acta biochimica et biophysica Sinica. 41:341-351.
Zong, W.X., and C.B. Thompson. 2006. Necrotic death as a cell fate. Genes & development. 20:1-15.