簡易檢索 / 詳目顯示

研究生: 趙壽雍
CHAO, SHOU-YUNG
論文名稱: 利用槽式內側間隔層與非對稱閘極架構抑制全包覆閘極奈米片電晶體之短通道效應
Suppression of Short-Channel Effects in Gate-All-Around Nanosheet Field-Effect Transistors Using Trench Inner Spacer and Asymmetric Gate Architecture
指導教授: 涂維珍
TU, WEI-CHEN
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 奈米積體電路工程碩士博士學位學程
MS Degree/Ph.D. Program on Nano-Integrated-Circuit Engineering
論文出版年: 2026
畢業學年度: 114
語文別: 中文
論文頁數: 192
中文關鍵詞: 全包覆閘極奈米片場效電晶體短通道效應槽式內側間隔層非對稱閘極
外文關鍵詞: Gate-All-Around Nanosheet Field-Effect Transistors, Short-Channel Effects, Trench Inner Spacer, Asymmetric Gate
相關次數: 點閱:5下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以模擬探討全包覆閘極奈米片場效電晶體 (Gate-All-Around Nanosheet Field-Effect Transistor, GAA NSFET) 之短通道效應(Short-Channel Effects, SCEs) 抑制技術。我們提出兩種結構性改良方案,包含單獨與結合槽式內側間隔層 (Trench Inner Spacer, TIS) 與非對稱閘極 (Asymmetric Gate, AG) 佈局,以增強元件的靜電控制能力。TIS 垂直插入基板,可以有效限制汲極電場向底部基板方向的穿透,並阻擋底部基板寄生通道形成所造成的漏電流;AG 則可降低汲極與底部基板寄生通道間的電容耦合。此外,本研究亦調整基板接地層摻雜 (Ground Plane Doping, GPD) 濃度,以強化底部基板區域的電位障壁。為了進一步評估其低功耗操作潛力,本研究亦針對低供應電壓 (low-VDD) 條件進行元件特性模擬,以分析所提出結構在未來低電壓邏輯應用中的可行性。所有元件層級模擬皆使用 Synopsys Sentaurus TCAD 進行,並進一步透過 TCAD Mixed-Mode CMOS 模擬評估所提出結構在電路層級的效能表現。
    模擬結果顯示,本研究提出的結構組合可顯著抑制短通道效應,包括有效降低汲極誘發能障降低 (Drain-Induced Barrier Lowering, DIBL)、改善次臨界擺幅 (Subthreshold Swing, SS),並大幅降低關態電流 (Ioff)。在 1.5 nm 節點 NSFET 中,DIBL 與 SS 的整體改善幅度最高均超過 25%,而 Ioff更降低達接近兩個數量級;同時在 low-VDD操作下仍能保持良好的靜電控制特性與開關性能。綜合而言,本研究提出之結構設計大幅提升元件可縮放性、降低漏電流,並展現出於低功耗應用中的高度潛力。

    This study investigates short-channel effects (SCEs) suppression techniques for gate-all-around nanosheet field-effect transistors (GAA NSFETs) through device simulations. Two structural optimization approaches are proposed, including the individual and combined implementation of a trench inner spacer (TIS) and an asymmetric gate (AG), to enhance electrostatic control. The TIS, vertically extended into the substrate, suppresses drain electric field penetration toward the bottom substrate parasitic channel, thereby reducing leakage current. The AG configuration further alleviates parasitic capacitive coupling between the drain and the bottom substrate region. In addition, ground plane doping (GPD) is optimized to strengthen the potential barrier in the bottom substrate.

    Device characteristics under low supply voltage (low-VDD) operation are also examined to evaluate the feasibility of the proposed structures for low-power logic applications. All device-level simulations are performed using Synopsys Sentaurus TCAD, and circuit-level performance is evaluated through TCAD mixed-mode CMOS simulations.

    Simulation results show that the proposed structures effectively suppress SCEs, including reduced drain-induced barrier lowering (DIBL), improved subthreshold swing (SS), and significantly lowered off-state current (Ioff). For a 1.5-nm-node NSFET, DIBL and SS improve by more than 25%, while Ioff is reduced by nearly two orders of magnitude. These results indicate that the proposed designs enhance scalability, suppress leakage, and are promising for low-power logic applications.

    考試合格證明 I 中英文摘要 II 誌謝 VII 目錄 IX 表目錄 XIII 圖目錄 XIV 第一章 緒論 1 1-1 半導體元件的微縮與結構演進 1 1-2 短通道效應 (Short-Channel Effects, SCEs) 6 1-3 元件模擬操作與其在先進節點的重要性 10 1-4 研究動機 12 第二章 文獻回顧 15 2-1 奈米片電晶體 (NSFET) 的靜電挑戰與底部電場穿透 15 2-2 底部基板寄生通道 (Bottom Substrate Parasitic Channel) 形成機制與基板工程研究 16 2-3 間隔層 (Spacer) 工程與其技術的演進 18 2-4 閘極工程 (Gate Engineering) 與非對稱閘極 (Asymmetric Gate, AG) 文獻探討 20 2-5 多重結構整合的研究缺口 20 2-6 TCAD 在奈米片電晶體 (NSFET) 電性研究中的角色 20 2-7 本研究定位 21 第三章 元件結構設計與物理模型 22 3-1 TCAD 模擬平台暨伺服器介紹 22 3-2 元件幾何結構與材料參數 25 3-2-1 奈米片電晶體 (NSFET) 幾何結構 25 3-2-2 間隔層與介電層結構 26 3-2-3 槽式內側間隔層 (Trench Inner Spacer, TIS) 結構 27 3-2-4 非對稱閘極 (Asymmetric Gate, AG) 結構 28 3-2-5 基板接地層摻雜 (Ground Plane Doping, GPD) 設計 29 3-2-6 GPD 以外的區域摻雜濃度分佈設定 29 3-2-7 材料與參數總表 30 3-3 物理模型與求解方法 30 3-3-1 載子傳輸模型與解算方法 30 3-3-2 載子遷移率模型 (Mobility Models) 31 3-3-3 能隙修正與本徵濃度模型 32 3-3-4 載子產生與復合模型 32 3-3-5 本研究模擬架構之適用範圍與文獻佐證 33 3-4 模擬輸出與電性參數萃取方法 35 3-4-1 偏壓掃描條件設定 35 3-4-2 模擬指標定義與萃取流程 36 3-4-3 模擬圖像輸出與後處理 38 第四章 奈米片電晶體 (NSFET) 設計改善機制之理論基礎 42 4-1 奈米片電晶體 (NSFET) 設計改善描述 42 4-2 奈米片改善結構之靜電模型與電性 42 4-3 基板接地層摻雜 (Ground Plane Doping, GPD)──拉高底部基板區域反轉條件,使底部基板不導通產生寄生通道 43 4-3-1 GPD 對於 Ioff 電流的影響 44 4-3-2 GPD 對於 DIBL 的影響 45 4-3-3 GPD 對於 SS 的影響 47 4-3-4 GPD 對 Ion 與 Ion/Ioff Ratio 的影響 49 4-4 槽式內側間隔層 (Trench Inner Spacer, TIS) ──削弱汲極到底部基板寄生通道的耦合能力與提高底部基板寄生通道之電子注入能障 49 4-4-1 TIS 對 Ioff 的影響 51 4-4-2 TIS 對 DIBL 的影響 53 4-4-3 TIS 對 SS 的影響 55 4-4-4 TIS 對 Ion 與 Ion/Ioff Ratio 的影響: 56 4-5 非對稱閘極 (Asymmetric Gate, AG)——增加汲極到底部基板寄生通道能障峰值的有效距離 57 4-5-1 AG 對 Ioff 的影響 58 4-5-2 AG 對於 DIBL 的影響 61 4-5-3 AG對於SS的影響 62 4-5-4 AG對 Ion 與 Ion/Ioff Ratio 的影響 64 第五章 模擬結果與討論 65 5-1 標準全包覆閘極奈米片場效電晶體 (Gate-All-Around Nanosheet Field-Effect Transistor, GAA NSFET) 之基準電性模擬 66 5-2 基板接地層摻雜 (Ground Plane Doping, GPD) 對短通道效應之影響 72 5-3 非對稱閘極 (Asymmetric Gate, AG) 結構對於元件電性影響 88 5-4 雙側槽式內側間隔層 (Trench Inner Spacer, TIS) 結構對於元件電性的影響 99 5-5 單源極 (Source) 側槽式內側間隔層 (Trench Inner Spacer, TIS)結構對於元件電性的影響 111 5-6 單汲極 (Drain) 側槽式內側間隔層 (Trench Inner Spacer, TIS) 結構對於元件電性的影響 122 5-7 不對稱閘極 (AG) 與雙側槽式內側間隔層 (TIS) 之整合效應 134 5-8 元件結構改善對電路層級行為之影響 146 5-9 低供應電壓 (low-VDD) 操作下之元件電性行為 148 5-10 不同類型槽式內側間隔層 (Trench Inner Spacer, TIS) 之間的電性探討分析 152 5-11 結果與歸納 157 第六章 結論 159 參考文獻 162

    [1] M. Roser and H. Ritchie, “Transistor count over time,” Our World in Data, [Online]. Available: https://ourworldindata.org/uploads/2020/11/Transistor-Count-over-time.png, Accessed 2025, 2020.
    [2] R. Das, T. R. Rajalekshmi, and A. James, “FinFET to GAA MBCFET: A review and insights,” IEEE Access, vol. XX, pp. 1–1, doi: 10.1109/ACCESS.2024.3384428, 2024.
    [3] H. Kam, “A 14-nm logic technology featuring second-generation FinFET, air-gapped interconnects, self-aligned double patterning, and a 0.0588-µm² SRAM cell size,” in Proceedings of the IEEE International Electron Devices Meeting (IEDM), pp. 1–4, 2014.
    [4] A. Veloso et al., “Nanowire and nanosheet FETs for ultra-scaled, high-density logic and memory applications,” Solid-State Electronics, vol. 168, p. 107736, 2020.
    [5] K. H. Yeap and H. Nisar, “Introductory chapter: VLSI,” in VLSI, Rijeka, Croatia: IntechOpen, doi: 10.5772/intechopen.69188, 2018.
    [6] H. Wong and K. Kakushima, “On the vertically stacked gate-all-around nanosheet and nanowire transistor scaling beyond the 5-nm technology node,” Nanomaterials, vol. 12, no. 10, p. 1739, doi: 10.3390/nano12101739, 2022.
    [7] J. Ajayan et al., “Nanosheet field effect transistors—A next generation device to keep Moore’s law alive: An intensive study,” Microelectronics Journal, vol. 114, p. 105141, 2021.
    [8] A. Veloso et al., “Gate-all-around nanowire and nanosheet FETs for advanced, ultra-scaled technologies,” in ECS Meeting Abstracts, MA2020-01, pp. 1369–1369, doi: 10.1149/MA2020-01241369mtgabs, 2020.
    [9] K.-S. Lee, B.-D. Yang, and J.-Y. Park, “Trench gate nanosheet FET to suppress leakage current from substrate parasitic channel,” IEEE Transactions on Electron Devices, vol. 70, no. 4, pp. 2042–2046, doi: 10.1109/TED.2023.3249650, 2023.
    [10] S. Yoo and S. Y. Kim, “Leakage optimization of the buried oxide substrate of nanosheet field-effect transistors,” IEEE Transactions on Electron Devices, vol. 69, no. 8, pp. 4109–4114, doi: 10.1109/TED.2022.3146300, 2022.
    [11] K.-S. Lee and J.-Y. Park, “N-type nanosheet FETs without ground plane region for process simplification,” Micromachines, vol. 13, p. 432, doi: 10.3390/mi13030432, 2022.
    [12] V. Jegadheesan, M. Jagadesh Kumar, and V. Ramgopal Rao, “Impact of geometrical parameters and substrate on analog/RF performance of gate-all-around nanowire and nanosheet FETs,” Superlattices and Microstructures, vol. 127, pp. 259–270, 2019.
    [13] R. Ritzenthaler et al., “Isolation of nanowires made on bulk wafers by ground plane doping,” in Proceedings of the European Solid-State Device Research Conference (ESSDERC), pp. 300–303, doi: 10.1109/ESSDERC.2017.8066580, 2017.
    [14] D.-E. Bang et al., “Junction depth optimization in trench gate nanosheet field-effect transistors,” Silicon, 2025.
    [15] IMEC, “Entering the nanosheet transistor era—Reviewing benefits and challenges of nanosheet device architectures,” IMEC White Paper, 2022.
    [16] M. Wang, “A review of reliability in gate-all-around nanosheet devices,” Micromachines, vol. 15, p. 269, doi: 10.3390/mi15020269, 2024.
    [17] Y. Shen et al., “Simulation of MoS₂ stacked nanosheet field-effect transistor,” Journal of Semiconductors, vol. 43, p. 082002, doi: 10.1088/1674-4926/43/8/082002, 2022.
    [18] E. Gili et al., “Asymmetric gate-induced drain leakage and body leakage in vertical MOSFETs with reduced parasitic capacitance,” IEEE Transactions on Electron Devices, vol. 53, no. 5, pp. 1080–1087, doi: 10.1109/TED.2006.872361, 2006.
    [19] Y. Wang, Y. Tang, L. Sun, and F. Cao, “High performance of junctionless MOSFET with asymmetric gate,” Superlattices and Microstructures, vol. 97, pp. 8–14, doi: 10.1016/j.spmi.2016.06.027, 2016.
    [20] M. Matsuda and A. Hiroki, “Analysis of quantum confinement in nanosheet FETs by using a quantum drift diffusion model,” IEEJ Transactions on Electronics, Information and Systems, vol. 142, pp. 1174–1179, doi: 10.1541/ieejeiss.142.1174, 2022.
    [21] S. Srivastava, P. Kushwaha, and S. Yadav, “Understanding the impact of extension region on stacked nanosheet field-effect transistor,” Solid-State Electronics, vol. 205, p. 108628, doi: 10.1016/j.sse.2023.108628, 2023.
    [22] M. Matsumoto et al., “Design decoupling of inner- and outer-gate lengths in nanosheet FETs for ultimate scaling,” in Proceedings of the International Conference on Simulation of Semiconductor Processes and Devices (SISPAD), doi: 10.1109/SISPAD.2023.10320125, 2023.
    [23] Y. P. Pundir, R. Saha, and P. Pal, “Mixed-mode circuit simulations with 5 nm node nanosheet transistors using TCAD,” in Proceedings of the International Conference on Advances in Computing, Communication and Materials (ICACCM), pp. 380–384, doi: 10.1109/ICACCM50413.2020.9213116, 2020.
    [24] imec, “Introducing 2D material-based devices into the logic scaling roadmap,” [Online]. Available: https://www.imec-int.com/en/articles/introducing-2d-material-based-devices-logic-scaling-roadmap, Accessed Dec. 21, 2025, 2023.
    [25] S. M. Sze, Semiconductor Devices: Physics and Technology, Wiley, Hoboken, NJ, USA, 2008.
    [26] S. S. Mahato et al., “DIBL in short-channel strained-Si n-MOSFET,” in Proceedings of the International Symposium on Physical and Failure Analysis of Integrated Circuits (IPFA), pp. 1–4, doi: 10.1109/IPFA.2008.4588186, 2008.
    [27] M. Sanaullah and M. H. Chowdhury, “Subthreshold swing characteristics of multilayer MoS₂ tunnel FET,” in Proceedings of the IEEE Midwest Symposium on Circuits and Systems (MWSCAS), pp. 1–4, doi: 10.1109/MWSCAS.2015.7282101, 2015.
    [28] W. Zhang, T. Ragab, and C. Basaran, “Electrostatic doping-based all GNR tunnel FET: An energy-efficient design for power electronics,” IEEE Transactions on Electron Devices, vol. 66, no. 4, pp. 1971–1978, doi: 10.1109/TED.2019.2896315, 2019.
    [29] D. Ryu et al., “Design and optimization of triple-k spacer structure in two-stack nanosheet FET from OFF-state leakage perspective,” IEEE Transactions on Electron Devices, vol. 67, no. 3, pp. 1317–1322, doi: 10.1109/TED.2020.2969445, 2020.
    [30] Y. Choi et al., “Simulation of the effect of parasitic channel height on characteristics of stacked gate-all-around nanosheet FET,” Solid-State Electronics, vol. 164, p. 107686, 2020.
    [31] S. Lee et al., “Novel scheme of inner spacer length optimization for sub-3-nm node silicon n/p nanosheet field-effect transistors,” IEEE Transactions on Electron Devices, vol. 70, no. 12, pp. 6151–6156, doi: 10.1109/TED.2023.3326789, 2023.
    [32] IEEE, International Roadmap for Devices and Systems (IRDS): 2023 Update—More Moore, IEEE, Piscataway, NJ, USA, [Online]. Available: https://irds.ieee.org/ , 2023.
    [33] Huang, Y.-C., Chiang, M.-H., Wang, S.-J., and Fossum, J. G.,“TCAD-Based Assessment of the Lateral GAA Nanosheet Transistor for Future CMOS,” IEEE Transactions on Electron Devices, vol. 68, no. 12, pp. 6586–6591, 2021.

    QR CODE