| 研究生: |
趙壽雍 CHAO, SHOU-YUNG |
|---|---|
| 論文名稱: |
利用槽式內側間隔層與非對稱閘極架構抑制全包覆閘極奈米片電晶體之短通道效應 Suppression of Short-Channel Effects in Gate-All-Around Nanosheet Field-Effect Transistors Using Trench Inner Spacer and Asymmetric Gate Architecture |
| 指導教授: |
涂維珍
TU, WEI-CHEN |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 奈米積體電路工程碩士博士學位學程 MS Degree/Ph.D. Program on Nano-Integrated-Circuit Engineering |
| 論文出版年: | 2026 |
| 畢業學年度: | 114 |
| 語文別: | 中文 |
| 論文頁數: | 192 |
| 中文關鍵詞: | 全包覆閘極奈米片場效電晶體 、短通道效應 、槽式內側間隔層 、非對稱閘極 |
| 外文關鍵詞: | Gate-All-Around Nanosheet Field-Effect Transistors, Short-Channel Effects, Trench Inner Spacer, Asymmetric Gate |
| 相關次數: | 點閱:5 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以模擬探討全包覆閘極奈米片場效電晶體 (Gate-All-Around Nanosheet Field-Effect Transistor, GAA NSFET) 之短通道效應(Short-Channel Effects, SCEs) 抑制技術。我們提出兩種結構性改良方案,包含單獨與結合槽式內側間隔層 (Trench Inner Spacer, TIS) 與非對稱閘極 (Asymmetric Gate, AG) 佈局,以增強元件的靜電控制能力。TIS 垂直插入基板,可以有效限制汲極電場向底部基板方向的穿透,並阻擋底部基板寄生通道形成所造成的漏電流;AG 則可降低汲極與底部基板寄生通道間的電容耦合。此外,本研究亦調整基板接地層摻雜 (Ground Plane Doping, GPD) 濃度,以強化底部基板區域的電位障壁。為了進一步評估其低功耗操作潛力,本研究亦針對低供應電壓 (low-VDD) 條件進行元件特性模擬,以分析所提出結構在未來低電壓邏輯應用中的可行性。所有元件層級模擬皆使用 Synopsys Sentaurus TCAD 進行,並進一步透過 TCAD Mixed-Mode CMOS 模擬評估所提出結構在電路層級的效能表現。
模擬結果顯示,本研究提出的結構組合可顯著抑制短通道效應,包括有效降低汲極誘發能障降低 (Drain-Induced Barrier Lowering, DIBL)、改善次臨界擺幅 (Subthreshold Swing, SS),並大幅降低關態電流 (Ioff)。在 1.5 nm 節點 NSFET 中,DIBL 與 SS 的整體改善幅度最高均超過 25%,而 Ioff更降低達接近兩個數量級;同時在 low-VDD操作下仍能保持良好的靜電控制特性與開關性能。綜合而言,本研究提出之結構設計大幅提升元件可縮放性、降低漏電流,並展現出於低功耗應用中的高度潛力。
This study investigates short-channel effects (SCEs) suppression techniques for gate-all-around nanosheet field-effect transistors (GAA NSFETs) through device simulations. Two structural optimization approaches are proposed, including the individual and combined implementation of a trench inner spacer (TIS) and an asymmetric gate (AG), to enhance electrostatic control. The TIS, vertically extended into the substrate, suppresses drain electric field penetration toward the bottom substrate parasitic channel, thereby reducing leakage current. The AG configuration further alleviates parasitic capacitive coupling between the drain and the bottom substrate region. In addition, ground plane doping (GPD) is optimized to strengthen the potential barrier in the bottom substrate.
Device characteristics under low supply voltage (low-VDD) operation are also examined to evaluate the feasibility of the proposed structures for low-power logic applications. All device-level simulations are performed using Synopsys Sentaurus TCAD, and circuit-level performance is evaluated through TCAD mixed-mode CMOS simulations.
Simulation results show that the proposed structures effectively suppress SCEs, including reduced drain-induced barrier lowering (DIBL), improved subthreshold swing (SS), and significantly lowered off-state current (Ioff). For a 1.5-nm-node NSFET, DIBL and SS improve by more than 25%, while Ioff is reduced by nearly two orders of magnitude. These results indicate that the proposed designs enhance scalability, suppress leakage, and are promising for low-power logic applications.
[1] M. Roser and H. Ritchie, “Transistor count over time,” Our World in Data, [Online]. Available: https://ourworldindata.org/uploads/2020/11/Transistor-Count-over-time.png, Accessed 2025, 2020.
[2] R. Das, T. R. Rajalekshmi, and A. James, “FinFET to GAA MBCFET: A review and insights,” IEEE Access, vol. XX, pp. 1–1, doi: 10.1109/ACCESS.2024.3384428, 2024.
[3] H. Kam, “A 14-nm logic technology featuring second-generation FinFET, air-gapped interconnects, self-aligned double patterning, and a 0.0588-µm² SRAM cell size,” in Proceedings of the IEEE International Electron Devices Meeting (IEDM), pp. 1–4, 2014.
[4] A. Veloso et al., “Nanowire and nanosheet FETs for ultra-scaled, high-density logic and memory applications,” Solid-State Electronics, vol. 168, p. 107736, 2020.
[5] K. H. Yeap and H. Nisar, “Introductory chapter: VLSI,” in VLSI, Rijeka, Croatia: IntechOpen, doi: 10.5772/intechopen.69188, 2018.
[6] H. Wong and K. Kakushima, “On the vertically stacked gate-all-around nanosheet and nanowire transistor scaling beyond the 5-nm technology node,” Nanomaterials, vol. 12, no. 10, p. 1739, doi: 10.3390/nano12101739, 2022.
[7] J. Ajayan et al., “Nanosheet field effect transistors—A next generation device to keep Moore’s law alive: An intensive study,” Microelectronics Journal, vol. 114, p. 105141, 2021.
[8] A. Veloso et al., “Gate-all-around nanowire and nanosheet FETs for advanced, ultra-scaled technologies,” in ECS Meeting Abstracts, MA2020-01, pp. 1369–1369, doi: 10.1149/MA2020-01241369mtgabs, 2020.
[9] K.-S. Lee, B.-D. Yang, and J.-Y. Park, “Trench gate nanosheet FET to suppress leakage current from substrate parasitic channel,” IEEE Transactions on Electron Devices, vol. 70, no. 4, pp. 2042–2046, doi: 10.1109/TED.2023.3249650, 2023.
[10] S. Yoo and S. Y. Kim, “Leakage optimization of the buried oxide substrate of nanosheet field-effect transistors,” IEEE Transactions on Electron Devices, vol. 69, no. 8, pp. 4109–4114, doi: 10.1109/TED.2022.3146300, 2022.
[11] K.-S. Lee and J.-Y. Park, “N-type nanosheet FETs without ground plane region for process simplification,” Micromachines, vol. 13, p. 432, doi: 10.3390/mi13030432, 2022.
[12] V. Jegadheesan, M. Jagadesh Kumar, and V. Ramgopal Rao, “Impact of geometrical parameters and substrate on analog/RF performance of gate-all-around nanowire and nanosheet FETs,” Superlattices and Microstructures, vol. 127, pp. 259–270, 2019.
[13] R. Ritzenthaler et al., “Isolation of nanowires made on bulk wafers by ground plane doping,” in Proceedings of the European Solid-State Device Research Conference (ESSDERC), pp. 300–303, doi: 10.1109/ESSDERC.2017.8066580, 2017.
[14] D.-E. Bang et al., “Junction depth optimization in trench gate nanosheet field-effect transistors,” Silicon, 2025.
[15] IMEC, “Entering the nanosheet transistor era—Reviewing benefits and challenges of nanosheet device architectures,” IMEC White Paper, 2022.
[16] M. Wang, “A review of reliability in gate-all-around nanosheet devices,” Micromachines, vol. 15, p. 269, doi: 10.3390/mi15020269, 2024.
[17] Y. Shen et al., “Simulation of MoS₂ stacked nanosheet field-effect transistor,” Journal of Semiconductors, vol. 43, p. 082002, doi: 10.1088/1674-4926/43/8/082002, 2022.
[18] E. Gili et al., “Asymmetric gate-induced drain leakage and body leakage in vertical MOSFETs with reduced parasitic capacitance,” IEEE Transactions on Electron Devices, vol. 53, no. 5, pp. 1080–1087, doi: 10.1109/TED.2006.872361, 2006.
[19] Y. Wang, Y. Tang, L. Sun, and F. Cao, “High performance of junctionless MOSFET with asymmetric gate,” Superlattices and Microstructures, vol. 97, pp. 8–14, doi: 10.1016/j.spmi.2016.06.027, 2016.
[20] M. Matsuda and A. Hiroki, “Analysis of quantum confinement in nanosheet FETs by using a quantum drift diffusion model,” IEEJ Transactions on Electronics, Information and Systems, vol. 142, pp. 1174–1179, doi: 10.1541/ieejeiss.142.1174, 2022.
[21] S. Srivastava, P. Kushwaha, and S. Yadav, “Understanding the impact of extension region on stacked nanosheet field-effect transistor,” Solid-State Electronics, vol. 205, p. 108628, doi: 10.1016/j.sse.2023.108628, 2023.
[22] M. Matsumoto et al., “Design decoupling of inner- and outer-gate lengths in nanosheet FETs for ultimate scaling,” in Proceedings of the International Conference on Simulation of Semiconductor Processes and Devices (SISPAD), doi: 10.1109/SISPAD.2023.10320125, 2023.
[23] Y. P. Pundir, R. Saha, and P. Pal, “Mixed-mode circuit simulations with 5 nm node nanosheet transistors using TCAD,” in Proceedings of the International Conference on Advances in Computing, Communication and Materials (ICACCM), pp. 380–384, doi: 10.1109/ICACCM50413.2020.9213116, 2020.
[24] imec, “Introducing 2D material-based devices into the logic scaling roadmap,” [Online]. Available: https://www.imec-int.com/en/articles/introducing-2d-material-based-devices-logic-scaling-roadmap, Accessed Dec. 21, 2025, 2023.
[25] S. M. Sze, Semiconductor Devices: Physics and Technology, Wiley, Hoboken, NJ, USA, 2008.
[26] S. S. Mahato et al., “DIBL in short-channel strained-Si n-MOSFET,” in Proceedings of the International Symposium on Physical and Failure Analysis of Integrated Circuits (IPFA), pp. 1–4, doi: 10.1109/IPFA.2008.4588186, 2008.
[27] M. Sanaullah and M. H. Chowdhury, “Subthreshold swing characteristics of multilayer MoS₂ tunnel FET,” in Proceedings of the IEEE Midwest Symposium on Circuits and Systems (MWSCAS), pp. 1–4, doi: 10.1109/MWSCAS.2015.7282101, 2015.
[28] W. Zhang, T. Ragab, and C. Basaran, “Electrostatic doping-based all GNR tunnel FET: An energy-efficient design for power electronics,” IEEE Transactions on Electron Devices, vol. 66, no. 4, pp. 1971–1978, doi: 10.1109/TED.2019.2896315, 2019.
[29] D. Ryu et al., “Design and optimization of triple-k spacer structure in two-stack nanosheet FET from OFF-state leakage perspective,” IEEE Transactions on Electron Devices, vol. 67, no. 3, pp. 1317–1322, doi: 10.1109/TED.2020.2969445, 2020.
[30] Y. Choi et al., “Simulation of the effect of parasitic channel height on characteristics of stacked gate-all-around nanosheet FET,” Solid-State Electronics, vol. 164, p. 107686, 2020.
[31] S. Lee et al., “Novel scheme of inner spacer length optimization for sub-3-nm node silicon n/p nanosheet field-effect transistors,” IEEE Transactions on Electron Devices, vol. 70, no. 12, pp. 6151–6156, doi: 10.1109/TED.2023.3326789, 2023.
[32] IEEE, International Roadmap for Devices and Systems (IRDS): 2023 Update—More Moore, IEEE, Piscataway, NJ, USA, [Online]. Available: https://irds.ieee.org/ , 2023.
[33] Huang, Y.-C., Chiang, M.-H., Wang, S.-J., and Fossum, J. G.,“TCAD-Based Assessment of the Lateral GAA Nanosheet Transistor for Future CMOS,” IEEE Transactions on Electron Devices, vol. 68, no. 12, pp. 6586–6591, 2021.