| 研究生: |
謝亞筑 Hsieh, Ya-Chu |
|---|---|
| 論文名稱: |
針對草酸鉑所導致的周邊神經病變進行神經保護藥物篩選 Screen neuroprotective drugs for oxaliplatin-induced peripheral neuropathy |
| 指導教授: |
沈孟儒
Shen, Meng-Ru |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 藥理學研究所 Department of Pharmacology |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 英文 |
| 論文頁數: | 48 |
| 中文關鍵詞: | 草酸鉑所導致的神經毒性 、神經保護作用 、去氧核醣核酸的氧化損傷 、鈣離子恆定調節 、粒線體功能缺損 |
| 外文關鍵詞: | oxaliplatin-induced neurotoxicity, neuroprotection, oxidative DNA damage, Ca2+ homeostasis, mitochondrial dysfunction |
| 相關次數: | 點閱:103 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
草酸鉑是第三代的鉑金類化療藥物,經常被使用於治療多種癌症,特別是在結直腸癌的化學治療上。但在臨床上,長期使用草酸鉑治療會引發急、慢性周邊神經病變的副作用,這些症狀主要包含自發性或誘發性的感覺異常、溫度感覺缺失、痛覺過敏以及觸感痛的現象,然而至今仍缺乏有效的藥物可以預防或治療此類由草酸鉑所導致的周邊神經病變。因此,本篇研究的主旨是從各種化合物資料庫中篩選出可有效減緩化療藥物神經毒性的神經保護藥物。透過高通量螢光顯微藥物開發系統進行藥物篩選,並進一步發現化合物CIX4X在體外實驗中對草酸鉑的神經毒性具有最顯著的神經保護效果。接下來我想進一步研究CIX4X潛在的神經保護機制,於是我針對去氧核醣核酸的氧化、鈣離子衡定調節以及粒線體功能這三方面進行測試,首先發現,CIX4X可改善因草酸鉑所引發的去氧核醣核酸氧化損傷以及鈣離子調節失衡的情況,除此之外,CIX4X也可改善神經細胞在草酸鉑治療後粒線體去極化的現象。顧及CIX4X挽救了背根神經節細胞的細胞凋亡,我接著探討是否CIX4X也會影響草酸鉑對癌細胞的細胞毒殺效果,在單獨只給CIX4X的治療組別中發現,CIX4X有些微抑制HT29細胞增生的效果,但在合併草酸鉑治療下,不論在HCT116或HT29大腸癌細胞株都沒有出現協同作用。綜合以上結果,我的研究指出CIX4X可能是限制草酸鉑神經毒性發展的潛在化合物。
Oxaliplatin, a platinum-based chemotherapeutic agent, is used for the treatment of numerous types of cancers, especially colorectal cancer. Clinically, long-term therapy with oxaliplatin leads to side effects of acute and chronic peripheral neuropathy, including paraesthesia, thermo-anesthesia, hyperalgesia, and mechano-allodynia. However, there is no effective medication to prevent or treat oxaliplatin-induced peripheral neuropathy (OIPN). This study aims to identify neuroprotective drugs from various compound libraries, which can ameliorate neurotoxicity provoked by chemotherapeutic agents. By applying an image-based high-content screening system, the compound CIX4X exhibited the most significant neuroprotective effect on oxaliplatin-induced neurotoxicity in vitro. I further investigated the neuroprotective mechanisms of CIX4X via detecting DNA oxidation, Ca2+ homeostasis, and the function of mitochondria. First, CIX4X abolished extensive oxidative DNA damage and reconstituted Ca2+ homeostasis dysregulation provoked by oxaliplatin. Moreover, CIX4X improved mitochondrial depolarization in dorsal root ganglion cells after oxaliplatin treatments. Considering CIX4X rescued oxaliplatin-induced DRG apoptosis, I further studied whether this compound might protect the cancer cells from oxaliplatin-induced cytotoxicity. The application of CIX4X alone showed a minor effect on suppressing HT29 cell proliferation, but no synergistic anticancer effects with oxaliplatin were found on both HCT116 and HT29 colon cancer cell lines. Taken together, these findings indicated that CIX4X might serve as a potential compound to limit the development of oxaliplatin-induced neurotoxicity.
Almeida, G.M., Duarte, T.L., Steward, W.P., and Jones, G.D. (2006). Detection of oxaliplatin-induced DNA crosslinks in vitro and in cancer patients using the alkaline comet assay. DNA Repair (Amst) 5, 219-225.
Anand, U., Otto, W.R., and Anand, P. (2010). Sensitization of capsaicin and icilin responses in oxaliplatin treated adult rat DRG neurons. Mol Pain 6, 82.
Berridge, M.J. (1998). Neuronal calcium signaling. Neuron 21, 13-26.
Brady, N.R., Elmore, S.P., van Beek, J.J., Krab, K., Courtoy, P.J., Hue, L., and Westerhoff, H.V. (2004). Coordinated behavior of mitochondria in both space and time: a reactive oxygen species-activated wave of mitochondrial depolarization. Biophys J 87, 2022-2034.
Brini, M., Cali, T., Ottolini, D., and Carafoli, E. (2014). Neuronal calcium signaling: function and dysfunction. Cell Mol Life Sci 71, 2787-2814.
Briston, T., Roberts, M., Lewis, S., Powney, B., Staddon, J.M., Szabadkai, G., and Duchen, M.R. (2017). Mitochondrial permeability transition pore: sensitivity to opening and mechanistic dependence on substrate availability. Sci Rep 7, 10492.
Canta, A., Pozzi, E., and Carozzi, V.A. (2015). Mitochondrial dysfunction in chemotherapy-induced peripheral neuropathy (CIPN). Toxics 3, 198-223.
Chalmers, S., and McCarron, J.G. (2008). The mitochondrial membrane potential and Ca2+ oscillations in smooth muscle. J Cell Sci 121, 75-85.
Chen, W., Lian, W., Yuan, Y., and Li, M. (2019). The synergistic effects of oxaliplatin and piperlongumine on colorectal cancer are mediated by oxidative stress. Cell Death Dis 10, 600.
Chen, Y.F., Chen, Y.T., Chiu, W.T., and Shen, M.R. (2013). Remodeling of calcium signaling in tumor progression. J Biomed Sci 20, 23.
Cheng, X., Huo, J., Wang, D., Cai, X., Sun, X., Lu, W., Yang, Y., Hu, C., Wang, X., and Cao, P. (2017). Herbal medicine AC591 prevents oxaliplatin-induced peripheral neuropathy in animal model and cancer patients. Front Pharmacol 8, 344.
Di Cesare Mannelli, L., Zanardelli, M., Failli, P., and Ghelardini, C. (2013). Oxaliplatin-induced oxidative stress in nervous system-derived cellular models: could it correlate with in vivo neuropathy? Free Radic Biol Med 61, 143-150.
Elias, D.M., and Sideris, L. (2003). Pharmacokinetics of heated intraoperative intraperitoneal oxaliplatin after complete resection of peritoneal carcinomatosis. Surg Oncol Clin N Am 12, 755-769.
Gorlach, A., Bertram, K., Hudecova, S., and Krizanova, O. (2015). Calcium and ROS: A mutual interplay. Redox Biol 6, 260-271.
Graham, M.A., Lockwood, G.F., Greenslade, D., Brienza, S., Bayssas, M., and Gamelin, E. (2000). Clinical pharmacokinetics of oxaliplatin: a critical review. Clin Cancer Res 6, 1205-1218.
Grienberger, C., and Konnerth, A. (2012). Imaging calcium in neurons. Neuron 73, 862-885.
Ibrahim, A., Hirschfeld, S., Cohen, M.H., Griebel, D.J., Williams, G.A., and Pazdur, R. (2004). FDA drug approval summaries: oxaliplatin. Oncologist 9, 8-12.
Kanat, O., Ertas, H., and Caner, B. (2017). Platinum-induced neurotoxicity: A review of possible mechanisms. World J Clin Oncol 8, 329-335.
Krames, E.S. (2014). The role of the dorsal root ganglion in the development of neuropathic pain. Pain Med 15, 1669-1685.
Laurent, A., Nicco, C., Chéreau, C., Goulvestre, C., Alexandre, J., Alves, A., Lévy, E., Goldwasser, F., Panis, Y., Soubrane, O., et al. (2005). Controlling tumor growth by modulating endogenous production of reactive oxygen species. Cancer Res 65, 948-956.
Liem, L., van Dongen, E., Huygen, F.J., Staats, P., and Kramer, J. (2016). The dorsal root ganglion as a therapeutic target for chronic pain. Reg Anesth Pain Med 41, 511-519.
Llorente-Folch, I., Rueda, C.B., Pardo, B., Szabadkai, G., Duchen, M.R., and Satrustegui, J. (2015). The regulation of neuronal mitochondrial metabolism by calcium. J Physiol 593, 3447-3462.
Melli, G., and Höke, A. (2009). Dorsal root ganglia sensory neuronal cultures: a tool for drug discovery for peripheral neuropathies. Expert Opin Drug Discov 4, 1035-1045.
Pinton, P., Giorgi, C., Siviero, R., Zecchini, E., and Rizzuto, R. (2008). Calcium and apoptosis: ER-mitochondria Ca2+ transfer in the control of apoptosis. Oncogene 27, 6407-6418.
Pivovarova, N.B., and Andrews, S.B. (2010). Calcium-dependent mitochondrial function and dysfunction in neurons. FEBS J 277, 3622-3636.
Rueda, C.B., Llorente-Folch, I., Amigo, I., Contreras, L., Gonzalez-Sanchez, P., Martinez-Valero, P., Juaristi, I., Pardo, B., del Arco, A., and Satrustegui, J. (2014). Ca2+ regulation of mitochondrial function in neurons. Biochim Biophys Acta 1837, 1617-1624.
Saif, M.W., and Reardon, J. (2005). Management of oxaliplatin-induced peripheral neuropathy. Ther Clin Risk Manag 1, 249-258.
Sapunar, D., Kostic, S., Banozic, A., and Puljak, L. (2012). Dorsal root ganglion-a potential new therapeutic target for neuropathic pain. J Pain Res 5, 31-38.
Schmitt, L.I., Leo, M., Kleinschnitz, C., and Hagenacker, T. (2018). Oxaliplatin modulates the characteristics of voltage-gated calcium channels and action potentials in small dorsal root ganglion neurons of rats. Mol Neurobiol 55, 8842-8855.
Sehgal, P., Szalai, P., Olesen, C., Praetorius, H.A., Nissen, P., Christensen, S.B., Engedal, N., and Møller, J.V. (2017). Inhibition of the sarco/endoplasmic reticulum (ER) Ca2+-ATPase by thapsigargin analogs induces cell death via ER Ca2+ depletion and the unfolded protein response. J Biol Chem 292, 19656-19673.
Seretny, M., Currie, G.L., Sena, E.S., Ramnarine, S., Grant, R., MacLeod, M.R., Colvin, L.A., and Fallon, M. (2014). Incidence, prevalence, and predictors of chemotherapy-induced peripheral neuropathy: A systematic review and meta-analysis. Pain 155, 2461-2470.
Sivandzade, F., Bhalerao, A., and Cucullo, L. (2019). Analysis of the mitochondrial membrane potential using the cationic jc-1 dye as a sensitive fluorescent probe. Bio Protoc 9, 3128.
Spingler, B., Whittington, D.A., and Lippard, S.J. (2001). 2.4 Å crystal structure of an oxaliplatin 1,2-d(GpG) intrastrand cross-link in a DNA dodecamer duplex. Inorg Chem 40, 5596-5602.
Starobova, H., and Vetter, I. (2017). Pathophysiology of chemotherapy-induced peripheral neuropathy. Front Mol Neurosci 10, 174.
Ta, L.E., Espeset, L., Podratz, J., and Windebank, A.J. (2006). Neurotoxicity of oxaliplatin and cisplatin for dorsal root ganglion neurons correlates with platinum-DNA binding. Neurotoxicology 27, 992-1002.
Trachootham, D., Alexandre, J., and Huang, P. (2009). Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach? Nat Rev Drug Discov 8, 579-591.
Waseem, M., Kaushik, P., Tabassum, H., and Parvez, S. (2018). Role of mitochondrial mechanism in chemotherapy-induced peripheral neuropathy. Curr Drug Metab 19, 47-54.
Wegierski, T., and Kuznicki, J. (2018). Neuronal calcium signaling via store-operated channels in health and disease. Cell Calcium 74, 102-111.
Wei, D., Mei, Y., Xia, J., and Hu, H. (2017). Orai1 and Orai3 mediate store-operated calcium entry contributing to neuronal excitability in dorsal root ganglion neurons. Front Cell Neurosci 11, 400.
Wojda, U., Salinska, E., and Kuznicki, J. (2008). Calcium ions in neuronal degeneration. IUBMB Life 60, 575-590.
Wu, L.L., Chiou, C.C., Chang, P.Y., and Wu, J.T. (2004). Urinary 8-OHdG: a marker of oxidative stress to DNA and a risk factor for cancer, atherosclerosis and diabetics. Clin Chim Acta 339, 1-9.
Yan, F., Liu, J.J., Ip, V., Jamieson, S.M., and McKeage, M.J. (2015). Role of platinum DNA damage-induced transcriptional inhibition in chemotherapy-induced neuronal atrophy and peripheral neurotoxicity. J Neurochem 135, 1099-1112.
Yang, Y., Luo, L., Cai, X., Fang, Y., Wang, J., Chen, G., Yang, J., Zhou, Q., Sun, X., Cheng, X., et al. (2018). Nrf2 inhibits oxaliplatin-induced peripheral neuropathy via protection of mitochondrial function. Free Radic Biol Med 120, 13-24.
Zajaczkowska, R., Kocot-Kepska, M., Leppert, W., Wrzosek, A., Mika, J., and Wordliczek, J. (2019). Mechanisms of chemotherapy-induced peripheral neuropathy. Int J Mol Sci 20.
Zorova, L.D., Popkov, V.A., Plotnikov, E.Y., Silachev, D.N., Pevzner, I.B., Jankauskas, S.S., Babenko, V.A., Zorov, S.D., Balakireva, A.V., Juhaszova, M., et al. (2018). Mitochondrial membrane potential. Anal Biochem 552, 50-59.
校內:2025-08-17公開