簡易檢索 / 詳目顯示

研究生: 邱柏軒
Qiu, Bo-Xuan
論文名稱: 具無人機協同配送之車輛路徑問題之穩健解
Robust solutions to the vehicle routing problem with drones
指導教授: 沈宗緯
Shen, Chung-Wei
學位類別: 碩士
Master
系所名稱: 管理學院 - 交通管理科學系
Department of Transportation and Communication Management Science
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 68
中文關鍵詞: 車輛路徑問題不確定性卡車結合無人機確定解穩健解自適應變鄰域搜索演算法蒙地卡羅模擬
外文關鍵詞: Vehicle routing problem, Uncertainty, Truck combined with drone, Deterministic solution, Robust solution, Adaptive Variable Neighborhood Search, Monte Carlo simulations
相關次數: 點閱:80下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著電子商務的蓬勃發展,對於貨物及時運輸的要求越來越高,而貨物在配送的過程中的旅行時間以及需求量可能會隨著環境變化而發生改變,像是道路擁塞導致旅行時間上升或式特殊節日下的需求上升等等,故在不確定情況下該如何在客戶期望之時間窗(Time window)完成配送是很重要的議題。因此,本研究探討在需求以及旅行時間不確定下卡車結合無人機配送問題,並且建立卡車結合無人機之確定性和不確定性的數學模型,而為了處理大規模問題,本研究發展自適應變鄰域搜索演算法來求解,最後使用蒙地卡羅模擬來分析穩健解的穩健性。結果顯示,在穩健解下完成配送時間普遍上升,將無人機納入考量的結果表明,15、30以及50個需求規模下,卡車無人機分開配送分別能夠降低15.12%、17.12%以及26.97%的旅行時間,而卡車無人機一起配送有較大的下降幅度,分別能夠降低17.86%、23.2%以及38.51%的旅行時間;穩健性分析結果顯示,卡車無人機一起配送的模式的穩健解具有最高的穩健性,而卡車無人機分開配送的模式在大規模需求下的穩健性較低,上述的分析結果提供了相關業者決策卡車以及無人機協作模式之參考。

    With the development of e-commerce, there is an increasing demand for timely transportation. However, during the delivery process, the travel time and demand for goods may change due to various uncertainties. Therefore, the use of a combination of trucks and drones improves transportation efficiency. In this study, we will explore the truck and drone delivery problem under uncertain demand and travel time. We will establish deterministic and robust mathematical models for truck and drone integration, and develop an adaptive variable neighborhood search algorithm to solve large-scale problems. Finally, Monte Carlo simulations will be conducted to analyze the robustness of robust solutions. The results show that total travel time increases under uncertain conditions, and indicate that for demand scales of 15, 30, and 50, the separated delivery of trucks and drones can reduce travel time by 15.12%, 17.12%, and 26.97%, the combined delivery of trucks and drones has a greater decline, which can reduce the travel time by 17.86%, 23.2% and 38.51% respectively. The robustness analysis reveals that the combined delivery mode of trucks and drones exhibits the highest level of robustness, while the separated delivery mode shows lower robustness for large-scale demands. These results provide valuable insights for relevant stakeholders regarding the collaboration between trucks and drones.

    摘要 I 誌謝 V 目錄 VI 表目錄 VIII 圖目錄 IX 第一章 緒論 1 1.1研究背景與動機 1 1.2研究目的與貢獻 2 1.3研究架構與流程 2 第二章 文獻回顧 5 2.1考量無人機和卡車之車輛路徑問題相關研究 5 2.2具不確定性之穩健車輛路徑問題相關研究 8 2.3啟發式演算法應用於路徑規劃相關研究 10 2.4小結 11 第三章 研究方法 14 3.1問題定義與假設 14 3.2卡車及無人機之運輸路徑問題模擬 18 3.3 AVNS之兩階段算法介紹 26 3.4可行性檢查和目標式計算 32 3.5營運模式比較 34 3.6穩健解驗證 35 第四章 案例分析 37 4.1模型相關參數設定 37 4.2實驗結果 40 4.2.1模型驗證 40 4.2.2時間窗以及距離分析 43 4.2.3有無需求以及旅行時間不確定性分析 50 4.3營運模式分析 57 4.4不同營運模式穩健解之穩健性分析 61 4.5小結 63 第五章 結論與建議 64 5.1結論 64 5.2未來研究與建議 65 參考文獻 66

    Bochtis, D. and Sørensen, C. G. (2009). The vehicle routing problem in field logistics part I. Biosystems engineering, 104(4), 447-457.
    Boysen, N., Briskorn, D., Fedtke, S., & Schwerdfeger, S. (2018). Drone delivery from trucks: Drone scheduling for given truck routes. Networks, 72(4), 506-527.
    Chiang, W.-C., Li, Y., Shang, J. and Urban, T. L. (2019). Impact of drone delivery on sustainability and cost: Realizing the UAV potential through vehicle routing optimization. Applied energy, 242, 1164-1175.
    Dantzig, G. B. and Ramser, J. H. (1959). The truck dispatching problem. Management science, 6(1), 80-91.
    Dixit, A., Mishra, A. and Shukla, A. (2019). Vehicle routing problem with time windows using meta-heuristic algorithms: a survey. In Harmony search and nature inspired optimization algorithms (pp. 539-546): Springer.
    Eshtehadi, R., Fathian, M., & Demir, E. (2017). Robust solutions to the pollution-routing problem with demand and travel time uncertainty. Transportation Research Part D: Transport and Environment, 51, 351-363.
    Ghiani, G., Guerriero, F., Laporte, G. and Musmanno, R. (2003). Real-time vehicle routing: Solution concepts, algorithms and parallel computing strategies. European Journal of Operational Research, 151(1), 1-11.
    Ham, A. M. (2018). Integrated scheduling of m-truck, m-drone, and m-depot constrained by time-window, drop-pickup, and m-visit using constraint programming. Transportation Research Part C: Emerging Technologies, 91, 1-14.
    Hu, C., Lu, J., Liu, X. and Zhang, G. (2018). Robust vehicle routing problem with hard time windows under demand and travel time uncertainty. Computers & Operations Research, 94, 139-153.
    Kitjacharoenchai, P., Min, B.-C. and Lee, S. (2020). Two echelon vehicle routing problem with drones in last mile delivery. International Journal of Production Economics, 225, 107598.
    Li, H., Wang, H., Chen, J., & Bai, M. (2020). Two-echelon vehicle routing problem with time windows and mobile satellites. Transportation research part B: methodological, 138, 179-201.
    Liu, Y., Liu, Z., Shi, J., Wu, G. and Pedrycz, W. (2020). Two-echelon routing problem for parcel delivery by cooperated truck and drone. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 51(12), 7450-7465.
    Lee, C., Lee, K., & Park, S. (2012). Robust vehicle routing problem with deadlines and travel time/demand uncertainty. Journal of the Operational Research Society, 63(9), 1294-1306.
    Marinakis, Y., Iordanidou, G.-R. and Marinaki, M. (2013). Particle swarm optimization for the vehicle routing problem with stochastic demands. Applied Soft Computing, 13(4), 1693-1704.
    Marinelli, M., Caggiani, L., Ottomanelli, M. and Dell'Orco, M. (2018). En route truck–drone parcel delivery for optimal vehicle routing strategies. IET Intelligent Transport Systems, 12(4), 253-261.
    Moghaddam, B. F., Ruiz, R. and Sadjadi, S. J. (2012). Vehicle routing problem with uncertain demands: An advanced particle swarm algorithm. Computers & Industrial Engineering, 62(1), 306-317.
    Murray, C. C. and Chu, A. G. (2015). The flying sidekick traveling salesman problem: Optimization of drone-assisted parcel delivery. Transportation Research Part C: Emerging Technologies, 54, 86-109.
    Meindl, B., & Templ, M. (2012). Analysis of commercial and free and open source solvers for linear optimization problems. Eurostat and Statistics Netherlands within the project ESSnet on common tools and harmonised methodology for SDC in the ESS, 20.
    Oruc, B. E. and Kara, B. Y. (2018). Post-disaster assessment routing problem. Transportation research part B: methodological, 116, 76-102.
    Poot, A., Kant, G., & Wagelmans, A. P. M. (2002). A savings based method for real-life vehicle routing problems. Journal of the Operational Research Society, 53(1), 57-68.
    Qin, J., Ye, Y., Cheng, B.-r., Zhao, X., & Ni, L. (2017). The emergency vehicle routing problem with uncertain demand under sustainability environments. Sustainability, 9(2), 288.
    Simoni, M. D., Kutanoglu, E. and Claudel, C. G. (2020). Optimization and analysis of a robot-assisted last mile delivery system. Transportation Research Part E: Logistics and Transportation Review, 142, 102049.
    Sluijk, N., Florio, A. M., Kinable, J., Dellaert, N. and Van Woensel, T. (2022). Two-echelon vehicle routing problems: A literature review. European Journal of Operational Research.
    Wang, X., Choi, T.-M., Liu, H. and Yue, X. (2016). A novel hybrid ant colony optimization algorithm for emergency transportation problems during post-disaster scenarios. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 48(4), 545-556.
    Wang, Z. and Sheu, J.-B. (2019). Vehicle routing problem with drones. Transportation research part B: methodological, 122, 350-364.
    Zhu, Q., Qian, L., Li, Y. and Zhu, S. (2006). An improved particle swarm optimization algorithm for vehicle routing problem with time windows. Paper presented at the 2006 IEEE International Conference on Evolutionary Computation.
    陳佑. (2022),應用自適應變鄰域搜索算法於穩健之卡車及無人機路徑問題,成功大學交通管理科學系碩士班,台南市。
    張安妮. (2022),考量途中起降之卡車與無人機混合配送模式最佳化,臺灣大學土木工程學系碩士班,台北市。

    下載圖示 校內:2025-08-31公開
    校外:2025-08-31公開
    QR CODE