簡易檢索 / 詳目顯示

研究生: 黃怡華
Huang, I-hua
論文名稱: 探討以奈米探針壓印鋁單晶塑性變形之實驗及模擬
Indentation-induced pop-in phenomena of single crystal aluminum:experiment and simulation approaches
指導教授: 郭瑞昭
Kuo, J. C.
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 91
中文關鍵詞: 奈米探針
外文關鍵詞: pop-in, Electron back scattering diffraction, Finite element method simulation, Nanoindentation
相關次數: 點閱:98下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • With the manufacturing process of nanodevices moving forward rapidly, the material mechanical properties have play an important role owing to the decreasing of device dimension in nanoscale. By using the nanoindentor (MTS XP) we can acquire the circumstantial mechanical data with a fast and reliable method. The pre-existing threading dislocation in material might be induced by indentation allowing the discontinuousness in the load-displacement curve and can be observed in gradation of the affected region. In this paper, we pay attention to the phenomena called “pop-in” during indentation and the relation to the beginning of slip system operation.
    The experiments are operated by the electron back-scatter diffraction (EBSD) to obtain the orientation imaging microscopy (OIM) of specimen. The simulation processes are performed by crystal plasticity finite element method which differs from other method by the extra subroutine taking the slip plane of face-centered cubic metal into account.
    Combine the experimental results and the simulation analysts to assure the accuracy of the behavior and further quantize the stress and strain distribution in the vicinity of affected zone.

    Abstract ..........................................I Acknowledgement .........................................II List of tables ..........................................V List of figures .........................................VI Chapter 1 Introduction ..........................1 Chapter 2 Backgrounds and theories..................3 2.1 Electron Back Scattering Diffraction (EBSD)...........3 2.1.1 Description of orientation..........................3 2.1.2 Introduction to EBSD................................8 2.1.3 Principles of EBSD.................................11 2.2 Theories and principles of nano-indentation..........14 2.2.1 Introduction to nano-indentation...................14 2.2.2 Nano-indentaiton...................................16 2.3 Finite element method................................22 2.3.1 Introduction.......................................22 2.3.2 Equilibrium equation...............................24 2.3.3 Element type.......................................25 2.3.4 Displacement matrix................................26 2.3.5 Stiffness matrix...................................30 2.3.6 Elastic Modulus....................................34 2.4 Crystal Plasticity Finite Element Method.............38 2.4.1 Crystal plasticity.................................39 2.4.2 Deformation gradient and velocity gradient.........39 2.4.3 Flow rule..........................................44 2.4.4 Work hardening rule................................48 Chapter 3 Materials and experiments................50 3.1 Materials and sample preparation.....................50 3.2 Characterization methods.............................54 3.2.1 Nano-indentation...................................54 3.2.2 Electron back scattering diffraction (EBSD)........57 Chapter 4 Simulation models........................58 4.1 Finite element modeling (FEM)........................58 4.2 Crystal plasticity finite element modeling(CPFEM)....61 Chapter 5 Results .................................62 5.1 Experimental results.................................62 5.1.1 Load-displacement curve............................62 5.1.2 Orientation image mapping (OIM)....................68 5.2 Simulations..........................................74 5.2.1 Finite element modeling............................74 5.2.2 Crystal plasticity finite element modeling.........76 Chapter 6 Discussions..............................78 6.1 Effects of indentation parameters on the mechanical properties...............................................78 6.2 Indentation-induced pop-in phenomenon................80 Chapter 7 Conclusion...............................89 Reference................................................90

    [1] Groenou, V., Kadijk, S. E., Acta Metall. 37,p. 2613,1989
    [2] Khan, M. Y., Brown, L. M., Chaudhri, M. M.,J. Phys. D:Appl. Phys. 25, A.257, 1992
    [3] Stelmashenko, N.A., Walls, M. G., Brown, L. M., Acta Metall. Mater. 41,p.2855, 1993
    [4] Lim, Y.Y., Chaudhri, M. M., Philos. Mag. A79, 1999
    [5] Flom, D. G., Komanduri, R.,Wear, 252, p.401, 2002
    [6] Komanduri, R., Chandrasekaran, N., Raff, L.M.,Wear, 240, p.113, 2000
    [7] Wang, Y.,Raabe, D., Kluber, C.,Roters, F.,Acta. Mater. 52, p.2229,2004
    [8] Gerberich, W.W., Nelson, J.C., Lilleoden E. T., Wyrobek, J.T., Acta. Mater. 44, p.3585, 1996
    [9] Chiu, Y.L., Ngan, A. H., Acta Mater. 50, p.1599, 2002
    [10] Tromas, C., J. C. Girard, Audurier, V. and Woirgard, J., J. Mat. Sci. 34, p. 1573,1999
    [11] Chaudhri, M. M.Phil, Mag. Lett. 53, p.55, 1986
    [12] Bunge, H. J. In Preferred Orientation in Deformed Metals and Rocks: an Introduction to Modern Texture Analysis, Academic Press Inc. UK, 1985.
    [13] Venables, J. A. and Harland, C. J., Phil. Mag. 27, p.1193, 1973.
    [14] Dingley, D. J., Proc Royal Microscopic Soc 19. p.74,1984
    [15] Dingley, D. J., Alderman J et al Scanning Microscop 1,Vol.2, p.451,1987.
    [16] Engler, O., Introduction to texture analysis, 2000
    [17] Johnson, K. l., Contact Mechanics (Cambridge University Press, Cambridge, 1985.
    [18] Bulychev, S. I., Alekhin, V. P., Shorshorow, M. Kh., Ternovskii, A. P., and Shnyrev, G. D., Zavod. Lab., Vol. 41, pp.1137, 1975.
    [19] Sneddon, I.N., International Journal of Engineering Science, Vol. 3, p. 47, 1965.
    [20] Nix, W.D. and Gao, H., Journal of the Mechanics and Physics of Solids, Vol. 46, No. 3, p. 411, 1998 .
    [21] Nix, W.D., Materials Science and Engineering A, Vol. A234-236, p. 37, 1997.
    [22] Oliver, W.C. and Pharr, G.M., Journal of Materials Research, Vol. 7, No. 6, p. 1564, 1992 .
    [23] Oliver, W.C., Journal of Materials Science, Vol. 16, No. 11, p. 3202, 2001 .
    [24] Reddy, J. N., An introduction to the finite element method, McGraw-Hill, 2006
    [25] Pharr, G.M.; Oliver, W.C. and Brotzen, F.R., Journal of Materials Research, Vol. 7, No. 3, p. 613, 1992 .
    [26] Asaro, R. J.; Needleman, A. Acta metal.Vol.33, p.923, 1985.
    [27] Kalidindi, D.A., Bronkhorst, C.A. Anand, Int. J. Mech. Phys. Solids, 40, p.536, 1992.
    [28] Liao, Y.Y., The Influence of Grain Boundary and Triple Junction on Plastic Deformation, 2006

    下載圖示 校內:2010-02-12公開
    校外:2010-02-12公開
    QR CODE