| 研究生: |
蔡仁勝 Tsai, Jen-Sheng |
|---|---|
| 論文名稱: |
應用於多媒體安全之以特徵為基礎的數位浮水印研究 Feature-Based Digital Watermarking for Multimedia Security |
| 指導教授: |
郭耀煌
Kuo, Yau-Hwang |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
電機資訊學院 - 資訊工程學系 Department of Computer Science and Information Engineering |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 英文 |
| 論文頁數: | 101 |
| 中文關鍵詞: | 多媒體安全 、影像浮水印 、三維網格浮水印 、特徵偵測 、區域選擇 |
| 外文關鍵詞: | Multimedia Security, Image Watermarking, 3D Mesh Watermarking, Feature Detection, Region Selection |
| 相關次數: | 點閱:101 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著數位多媒體資料持續增加與廣泛應用,多媒體安全在保護其內容免於非法使用變得愈來愈重要。數位浮水印是應用於多媒體安全上處理這些議題的核心技術,例如版權保護、內容認證和竄改偵測。近來很多針對這些目標的浮水印研究被提出,但是在實際應用仍然存在著一些困難,包含強健性與安全性等。因此,本論文針對多媒體安全提出一個新穎的基於特徵之數位浮水印架構和其相對應的基本設計原則,藉著同時考量多媒體內容屬性和浮水印需要性以偵測出適當的特徵,接著根據特徵值挑選出最好的區域集合,與浮水印資訊結合達到最佳的效能。基於前述所提的架構,我們將其具體實現於二維影像和三維網格浮水印方法以驗證效能。在二維影像浮水印方法中,我們利用尺度適應性自相關矩陣和高斯拉普拉斯運算從目標影像中獲得特徵區域,並且建構一個選擇程序評估特徵區域的屬性,用以決定一個最佳的區域集合來嵌入浮水印的資訊,它可以針對各種攻擊達到最大的強健性,並且可以盡量保有影像本身的品質,我們也在偵測與選取特徵區域的程序加入隨機性來強化安全性,用以防止浮水印資訊被未授權的惡意使用者任意的存取。在三維網格浮水印方法中,首先從目標網格模型中偵測出可抵抗姿勢改變的特徵,包含三維的表面距離和形狀直徑特徵值,接著建構特徵的直方圖以結合浮水印資訊,達到在保有一定的強健性下具有最小的失真度。最後,我們以充分的實驗與分析結果具體呈現所提出的架構具可行性及有效性。
With the proliferation of digital multimedia data, multimedia security has become increasingly important to protect the content from illegal uses. Digital watermarking is a core enabling technology for multimedia security to deal with the issues in multimedia applications, such as copyright protection, content authentication and tampering detection. Recently, much research in this technology has been proposed for the purpose, but there are still some challenging difficulties for achieving robustness and security. In this dissertation, a new feature-based watermarking framework and its fundamental design principles are presented to mitigate the difficulties. We begin with detecting good features by jointly considering multimedia properties and watermarking requirements. An optimal region set is selected according to the detected features and linked with watermark information to achieve a desired goal. The framework is implemented in two-dimensional (2D) image and three-dimensional (3D) mesh watermarking to verify its performance. In the 2D image watermarking, local features are obtained from a target image based on the scale-adapted auto-correction matrix and the Laplacian-of-Gaussian operation. A selection process is then constructed to choose a feature region set, which has the greatest robustness against various attacks and can preserve image quality as much as possible after being watermarked. Moreover, we incorporate randomization in determining features to mitigate the leakage of secret information for enhancing watermarking security. In the 3D mesh watermarking, pose-oblivious features that include the geodesic distance and the local shape diameter are detected from a target mesh model. We build histograms of these features for watermarking to minimize mesh distortions while keeping robustness. Extensive experiments and analyses are conducted to clearly demonstrate the effectiveness of our proposed framework.
[1] I. J. Cox, M. L. Miller, and J. A. Bloom, Digital Watermarking, San Francisco, CA: Morgan Kaufman, 2001.
[2] B. Furht and D. Kirovski, Multimedia Security Handbook, Boca Raton, FL: CRC Press, 2004.
[3] S. Katzenbeisser and F. A. P. Petitcolas, Information Hiding Techniques for Steganography and Digital Watermarking, Boston, MA: Artech House, 2000.
[4] I. J. Cox, J. Kilian, F. T. Leighton, and T. Shamoon, “Secure spread spectrum watermarking for multimedia,” IEEE Trans. Image Processing, vol. 6, no. 12, pp. 1673-1687, 1997.
[5] B. Chen and G. Wornell, “Quantization index modulation: a class of provably good methods for digital watermarking and information embedding,” IEEE Trans. Information Theory, vol. 47, no. 4, pp. 1423-1443, 2001.
[6] J. Eggers, R. Baüml, R. Tzschoppe, and B. Girod, “Scalar costa scheme for information embedding,” IEEE Trans. Signal Processing, vol. 51, no. 4, pp. 1003-1019, 2003.
[7] M. Kutter, S. K. Bhattacharjee, and T. Ebrahimi, “Toward second generation watermarking schemes,” IEEE Int. Conf. Image Processing, vol. 1, pp. 320-323, 1999.
[8] P. Bas, J. M. Chassery, and B. Macq, “Geometrically invariant watermarking using feature points,” IEEE Trans. Image Processing, vol. 11, no. 9, pp. 1014-1028, 2002.
[9] C. W. Tang and H. M. Hang, “A feature-based robust digital image watermarking scheme,” IEEE Trans. Signal Processing, vol. 51, no. 4, pp. 950-959, 2003.
[10] J. S. Seo and C. D. Yoo, “Localized image watermarking based on feature points of scale-space representation,” Pattern Recognition, vol. 37, no. 7, pp. 1365-1375, 2004.
[11] H. Y. Lee, H. Kim, and H. K. Lee, “Robust image watermarking using local invariant features,” Journal SPIE, Optical Engineering, vol. 45, no. 3, pp. 037002-1 - 037002-11, 2006.
[12] J. S. Seo and C. D. Yoo, “Image watermarking based on invariant regions of scale-space representation,” IEEE Trans. Signal Processing, vol. 54, no. 4, pp. 1537-1549, 2006.
[13] C. S. Lu, S. W. Sun, C. Y. Hsu, and P. C. Chang, “Media hash-dependent image watermarking resilient against both geometric attacks and estimation attacks based on false positive-oriented detection,” IEEE Trans. Multimedia, vol. 8, no. 4, pp. 668-685, 2006.
[14] X. Wang, J. Wu, and P. Niu, “A new digital image watermarking algorithm resilient to desynchronization attacks,” IEEE Trans. Information Forensics Security, vol. 2, no.4, pp. 655-633, 2007.
[15] J. S. Tsai, W. B. Huang, C. L. Chen, and Y. H. Kuo, "A Feature-based digital image watermarking for copyright protection and content authentication," IEEE Int. Conf. Image Processing, vol. 5, pp. 469-472, 2007.
[16] D. Zheng, S. Wang, and J. Zhao, “RST invariant image watermarking algorithm with mathematical modeling and analysis of the watermarking processes,” IEEE Trans. Image Processing, vol. 18, no. 5. pp. 1055-1068, 2009.
[17] C. Deng, X. Gao, X. Li, and D. Tao, “Local histogram based geometric invariant image watermarking,” Signal Processing, vol. 90, no. 12, pp. 3256-3264, 2010.
[18] X. Gao, C. Deng, X. Li, and D. Tao, “Geometric distortion insensitive image watermarking in affine covariant regions,” IEEE Trans. Syst. Man Cybern. C Appl. Rev., vol. 40, no. 3, pp. 278-286, 2010.
[19] P. Rondao-Alface and B. Macq, “Blind watermarking of 3D meshes using robust feature point detection,” IEEE Int. Conf. Image Processing, vol. 1, pp. 693-696, 2005.
[20] S. Zafeiriou, A. Tefas, and I. Pitas, “Blind robust watermarking schemes for copyright protection of 3D mesh objects,” IEEE Trans. Visualization Computer Graphics, vol. 11, no. 5, pp. 596-607, 2005.
[21] J. W. Cho, R. Prost, and H. Y. Jung, “An oblivious watermarking for 3-D polygonal meshes using distribution of vertex norms,” IEEE Trans. Signal Processing, vol. 55, no. 1, pp. 142-155, 2007.
[22] A. G. Bors, “Watermarking mesh-based representations of 3D objects using local moments,” IEEE Trans. Image Processing, vol. 15, no. 3, pp. 687-701, 2006.
[23] J. M. Konstantinides, A. Mademlis, P. Daras, P. A. Mitkas, and M. G. Strintzis, “Blind robust 3-D mesh watermarking based on oblate spheroidal harmonics,” IEEE Trans. Multimedia, vol. 11, no. 1, pp. 23-38, 2009.
[24] Y. Yang and I. Ivrissimtzis, “Polygonal mesh watermarking using Laplacian coordinates,” Computer Graphics Forum, vol. 29, no. 5, pp. 1585-1593, 2010.
[25] K. Wang, G. Lavoué, F. Denis, and A. Baskurt, “Robust and blind mesh watermarking based on volume moments,” Computers & Graphics, vol. 35, no.1, pp. 1-19. 2011.
[26] T. Tuytelaars and K. Mikolajczyk, “Local invariant feature detectors: a survey,” Foundations and Trends in Computer Graphics and Vision, vol. 3, no. 3, pp. 177-280, 2008.
[27] K. Mikolajczyk and C. Schmid, “Indexing based on scale invariant interest points,” IEEE Int. Conf. Computer Vision, pp. 525-531, 2001.
[28] K. Mikolajczyk and C. Schmid, “Scale and affine invariant interest point detectors,” Int. J. Computer Vision, vol. 60, no. 1, pp. 63-86, 2004.
[29] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,” Int. J. Computer Vision, vol. 60, no. 2, pp. 91-110, 2004.
[30] K. Mikolajczyk, T. Tuytelaars, C. Schmid, A. Zisserman, J. Matas, F. Schaffalitzky, T. Kadir, and L. Van Gool, “A comparison of affine region detectors,” Int. J. Computer Vision, vol. 65, no. 1-2, pp. 43-72, 2005.
[31] C. Schmid, R. Mohr, and C. Bauckhage, “Evaluation of interest point detectors,” Int. J. Computer Vision, vol. 37, no.2, pp. 151-172, 2000.
[32] L. Pérez-Freire, P. Comesaña, J. R. Troncoso-Pastoriza, and F. Pérez-González, “Watermarking security: a survey,” Trans. Data Hiding and Multimedia Security I, vol. 4300, pp. 41-72, 2006.
[33] L. Pérez-Freire and F. Pérez-González, “Spread-spectrum watermarking security,” IEEE Trans. Information Forensics Security, vol. 4, no. 4, pp. 2-24, 2009.
[34] F. Cayre, C. Fontaine, and T. Furon, “Watermarking security: theory and practice,” IEEE Trans. Signal Processing, vol. 53, no. 10, pp. 3976-3987, 2005.
[35] F. Cayre and P. Bas, “Kerckhoffs-based embedding security classes for WOA data hiding,” IEEE Trans. Information Forensics Security, vol. 3, no. 1, pp. 1-15, 2008.
[36] F. Deguillaume, S. Voloshynovskiy, and T. Pun, “Secure hybrid robust watermarking resistant against tampering and copy attack,” Signal Processing, vol. 83, no. 10, pp. 2133-2170, 2003.
[37] C. S. Lu and C. Y. Hsu, “Near-optimal watermark estimation and its countermeasure: antidisclosure watermark for multiple watermark embedding,” IEEE Trans. Circuits Syst. Video Technol., vol. 17, no. 4, pp. 454-467, 2007.
[38] S. Voloshynovskiy, S. Pereira, V. Iquise, and T. Pun, “Attack modeling: towards a second generation watermarking benchmark,” Signal Processing, vol. 81, no. 6, pp. 1177-1214, 2001.
[39] Fabien A. P. Petitcolas, “Watermarking schemes evaluation,” IEEE Signal Processing Magazine, vol. 17, no. 5, pp. 58–64, 2000.
[40] H. Kellerer, U. Pferschy, and D. Pisinger, Knapsack Problems, Springer, Berlin, 2004.
[41] P. C. Chu and J. E. Beasley, “A genetic algorithm for the multidimensional knapsack problem,” Journal of Heuristics, vol. 4, pp.63-86, 1998.
[42] R. J. Moraga, G. W. DePuy, and G. E. Whitehouse, “Meta-RaPS approach for the 0-1 multidimensional knapsack problem,” Computer & Industrial Engineering, vol. 48, no. 1, pp. 83-96, 2005.
[43] S. Voloshynovskiy, A. Harrigel, N. Baumgartner, and T. Pun, “A stochastic approach to content adaptive digital image watermarking”, Int. Workshop Information Hiding, Lecture Notes in Computer Science, vol. 1768, pp. 211-236, 1999.
[44] G. Schaefer and M. Stich, “UCID - an uncompressed colour image database,” Proc. SPIE Storage and Retrieval Methods and Applications for Multimedia, pp. 472-480, 2004.
[45] S. Ehsan, N. Kanwal, A. F. Clark, and K. D. McDonald-Maier, “Measuring the coverage of interest point detectors,” Lecture Notes in Computer Science, vol. 6753, pp. 253-261, 2011.
[46] A. Swaminathan, Y. Mao, and M. Wu, “Robust and secure image hashing,” IEEE Trans. Information Forensics Security, vol. 1, no. 2, pp.215-230, 2006.
[47] T. M. Cover and J. A. Thomas, Elements of Information Theory, 2nd Edition, John Wiley & Sons, New York, 1991.
[48] D. Anguelov, P. Srinivasan, D. Koller, S. Thrun, J. Rodgers, and J. Davis, “SCAPE: shape completion and animation of people,” ACM Trans. Graph., vol. 24, no. 3, pp. 408-416, 2005.
[49] D. L. James and C. D. Twigg, “Skinning mesh animations,” ACM Trans. Graph., vol. 24, no. 3, pp. 399-407, 2005.
[50] J. P. Lewis, M. Cordner, and N. Fong, “Pose space deformation: a unified approach to shape interpolation and skeleton-driven deformation,” Int. Conf. Computer Graphics and Interactive Techniques, pp. 165-172, 2000.
[51] R. W. Sumner and J. Popović, “Deformation transfer for triangle meshes,” ACM Trans. Graph., vol. 23, no. 3, pp. 399-405, 2004.
[52] A. Nealen, O. Sorkine, M. Alexa, and D. Cohen-Or, “A sketch-based interface for detail-preserving mesh editing,” ACM Trans. Graph., vol. 24, no. 3, pp. 1142-1147, 2005.
[53] O. Sorkine and M. Alexa, “As-rigid-as-possible surface modeling,” Eurographics Symposium Geometry Processing(SGP), pp. 109-116, 2007.
[54] K. Wang, G. Lavoué, F. Denis, and A. Baskurt, “A comprehensive survey on three-dimensional mesh watermarking,” IEEE Trans. Multimedia, vol. 10, no. 8, pp. 1513-1527, 2008.
[55] P. Rondao-Alface and B. Macq, "From 3D mesh data hiding to 3D shape blind and robust watermarking: a survey," Trans. Data Hiding and Multimedia Security II, pp. 91-115, 2007.
[56] M. Novotni and R. Klein, “Computing geodesic distances on triangular meshes,” Int. Conf. Central Europe Computer Graphics, Visualization and Computer Vision, pp. 341-347, 2002.
[57] R. Kimmel and J. A. Sethian, “Computing geodesic paths on manifolds,” Proc. National Academy of Science, vol. 95, no. 15, pp. 8431-8435, 1998.
[58] L. Shapira, A. Shamir, and D. Cohen-Or, “Consistent mesh partitioning and skeletonisation using the shape diameter function,” The Visual Computer, vol. 24, no. 4, pp. 249-259, 2008.
[59] K. Wang, G. Lavoué, F. Denis, A. Baskurt, and H. Xiyan, "A benchmark for 3D mesh watermarking," Int.Conf. Shape Modeling, pp. 231-235, 2010.
校內:2022-08-01公開