| 研究生: |
洪佩雯 Hung, Pei-Wen |
|---|---|
| 論文名稱: |
探討Fas結合蛋白FAF1調控鹽皮質激素受體轉錄活性之角色 Modulation of mineralocorticoid receptor transcriptional activity by Fas-associated factor 1 |
| 指導教授: |
林鼎晏
Lin, Ding-Yen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
生物科學與科技學院 - 生物資訊與訊息傳遞研究所 Insitute of Bioinformatics and Biosignal Transduction |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 62 |
| 中文關鍵詞: | Fas結合蛋白 、鹽皮質激素受體 、SUMO類泛素蛋白質修飾化 |
| 外文關鍵詞: | FAF1, MR, sumoylation |
| 相關次數: | 點閱:100 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
SUMO (Small ubiquitin-like modifier, SUMO) 類泛素蛋白質修飾在多種生物生理功能中扮演重要的角色。蛋白質被SUMO修飾之後,另一類含有SUMO-interacting motif (SIM)的蛋白質會以非共價鍵的方式與SUMO修飾的蛋白質有交互作用。Fas-associated factor 1 (FAF1) 蛋白質為Fas受體的結合蛋白,其功能被證實可以促進Fas所誘導的細胞凋亡。進一步的研究發現FAF1會參與在很多的訊息傳遞路徑以促進細胞死亡和調控泛素化(Ubiquitination)依賴性蛋白質的水解。舉例來說,FAF1蛋白質會透過兩種方式去抑制NF-B的訊息傳遞,第一透過直接與p65蛋白有交互作用,進而抑制p65入核,或者透過抑制I-B kinase (IKK)複合體聚集,進而使I-B水解p65。除此之外,FAF1會促進β-catenin的泛素化及水解以拮抗Wnt路徑。最近研究顯示FAF1對於鹽皮質激素受體(mineralocorticoid receptor , MR)誘導的轉錄活化有differential effects。先前在本實驗室已經發現FAF1含有兩個可能的SIMs。實驗結果發現FAF1 SIMs對於促進Fas誘導的細胞凋亡、抑制NF-B的訊息傳遞及促進β-catenin降解並不扮演重要的角色。然而,我們意外地發現FAF1 SIMs對於FAF1結合到SUMO蛋白質修飾的MR及抑制MR調控的報導基因活性相當的重要。在機制上,我們的結果顯示FAF1會抑制aldosterone誘導MR N-C端的交互作用和轉錄活化,SIMs即扮演重要角色。未來更進一步的研究想去探討在不同荷爾蒙受體上FAF1 SIMs的功能性。我們推測FAF1 SIMs與其他SUMO蛋白質修飾蛋白的交互作用會參與在多種的訊息傳遞路徑中。
Small ubiquitin-like modifier (SUMO) modification plays important roles in the regulation of diverse cellular processes. Notably, SUMO-interacting motif (SIM) is present in proteins mediates noncovalent interactions with a wide variety of SUMO-conjugated proteins. Fas-associated factor 1 (FAF1) was originally identified as a interacting partner of Fas receptor that enhances apoptosis initiated through Fas ligand. Further studies have revealed that FAF1 participates in diverse mechanisms that promote cell death and modulate ubiquitin-dependent protein degradation. For example, FAF1 suppressed NF-B survival pathway by inhibiting I-B kinase (IKK) complex activation or interfering nuclear translocation of the NF-B p65 subunit upon TNFα treatment. Additionally, FAF1 antagonizes canonical Wnt pathway by promoting β-catenin ubiquitination and degradation. Recent studies also demonstrated that differential effects of FAF1 on mineralocorticoid receptor (MR)-driven transactivation. Our laboratory has recently discovered that FAF1 contains two putative SUMO interacting motifs (SIMs). Our previous studies demonstrated that the SIMs of FAF1 are not crucial to promote Fas-induced apoptosis, inhibit NF-B activation, and promote β-catenin degradation. Currently, we found that FAF1 SIMs are required for FAF1 binding to sumoylated MR and repressing MR-mediated reporter activity. Mechanismly, our data showed that FAF1 inhibits aldosterone-induced MR N-C interaction and transactivation in a SIMs-dependent manner. Further studies are required to determine the functional role of FAF1 SIMs in different types of hormone receptors. We speculate that the interactions of FAF1/SIMs with other sumoylated proteins involved in multiple signaling pathways.
1 Chu, K., Niu, X. & Williams, L. T. A Fas-associated protein factor, FAF1, potentiates Fas-mediated apoptosis. Proc Natl Acad Sci U S A 92, 11894-11898 (1995).
2 Ryu, S. W., Chae, S. K., Lee, K. J. & Kim, E. Identification and characterization of human Fas associated factor 1, hFAF1. Biochemical and biophysical research communications 262, 388-394, doi:10.1006/bbrc.1999.1217 (1999).
3 Becker, K., Schneider, P., Hofmann, K., Mattmann, C. & Tschopp, J. Interaction of Fas(Apo-1/CD95) with proteins implicated in the ubiquitination pathway. FEBS letters 412, 102-106 (1997).
4 Ryu, S. W. & Kim, E. Apoptosis induced by human Fas-associated factor 1, hFAF1, requires its ubiquitin homologous domain, but not the Fas-binding domain. Biochemical and biophysical research communications 286, 1027-1032, doi:10.1006/bbrc.2001.5505 (2001).
5 Menges, C. W., Altomare, D. A. & Testa, J. R. FAS-associated factor 1 (FAF1): diverse functions and implications for oncogenesis. Cell Cycle 8, 2528-2534 (2009).
6 Park, M. Y., Jang, H. D., Lee, S. Y., Lee, K. J. & Kim, E. Fas-associated factor-1 inhibits nuclear factor-kappaB (NF-kappaB) activity by interfering with nuclear translocation of the RelA (p65) subunit of NF-kappaB. The Journal of biological chemistry 279, 2544-2549 (2004).
7 Song, E. J., Yim, S. H., Kim, E., Kim, N. S. & Lee, K. J. Human Fas-associated factor 1, interacting with ubiquitinated proteins and valosin-containing protein, is involved in the ubiquitin-proteasome pathway. Molecular and cellular biology 25, 2511-2524 (2005).
8 Zhang, L. et al. Fas-associated factor 1 is a scaffold protein that promotes beta-transducin repeat-containing protein (beta-TrCP)-mediated beta-catenin ubiquitination and degradation. The Journal of biological chemistry 287, 30701-30710 (2012).
9 Zhang, L. et al. Fas-associated factor 1 antagonizes Wnt signaling by promoting beta-catenin degradation. Mol Biol Cell 22, 1617-1624 (2011).
10 Obradovic, D. et al. DAXX, FLASH, and FAF-1 modulate mineralocorticoid and glucocorticoid receptor-mediated transcription in hippocampal cells--toward a basis for the opposite actions elicited by two nuclear receptors? Mol Pharmacol 65, 761-769 (2004).
11 Bjorling-Poulsen, M., Seitz, G., Guerra, B. & Issinger, O. G. The pro-apoptotic FAS-associated factor 1 is specifically reduced in human gastric carcinomas. International journal of oncology 23, 1015-1023 (2003).
12 Hidalgo, A. et al. Microarray comparative genomic hybridization detection of chromosomal imbalances in uterine cervix carcinoma. BMC Cancer 5, 77-77 (2005).
13 Bea, S. et al. Uniparental disomies, homozygous deletions, amplifications, and target genes in mantle cell lymphoma revealed by integrative high-resolution whole-genome profiling. Blood 113, 3059-3069 (2009).
14 Weersma, R. K. et al. Confirmation of multiple Crohn's disease susceptibility loci in a large Dutch-Belgian cohort. The American journal of gastroenterology 104, 630-638 (2009).
15 Viengchareun, S. et al. The mineralocorticoid receptor: insights into its molecular and (patho)physiological biology. Nuclear receptor signaling 5, e012 (2007).
16 Baker, M. E., Funder, J. W. & Kattoula, S. R. Evolution of hormone selectivity in glucocorticoid and mineralocorticoid receptors. The Journal of steroid biochemistry and molecular biology 137, 57-70 (2013).
17 Gekle, M., Bretschneider, M., Meinel, S., Ruhs, S. & Grossmann, C. Rapid mineralocorticoid receptor trafficking. Steroids 81, 103-108 (2014).
18 Piwien Pilipuk, G., Vinson, G. P., Sanchez, C. G. & Galigniana, M. D. Evidence for NL1-independent nuclear translocation of the mineralocorticoid receptor. Biochemistry 46, 1389-1397 (2007).
19 Walther, R. F. et al. A serine/threonine-rich motif is one of three nuclear localization signals that determine unidirectional transport of the mineralocorticoid receptor to the nucleus. The Journal of biological chemistry 280, 17549-17561 (2005).
20 Arriza, J. L. et al. Cloning of human mineralocorticoid receptor complementary DNA: structural and functional kinship with the glucocorticoid receptor. Science (New York, N.Y.) 237, 268-275 (1987).
21 Albiston, A. L., Smith, R. E., Obeyesekere, V. R. & Krozowski, Z. S. Cloning of the 11βHSD type II enzyme from human kidney. Endocrine Research 21, 399-409 (1995).
22 Krozowski, Z., Albiston, A. L., Obeyesekere, V. R., Andrews, R. K. & Smith, R. E. The human 11 beta-hydroxysteroid dehydrogenase type II enzyme: comparisons with other species and localization to the distal nephron. The Journal of steroid biochemistry and molecular biology 55, 457-464 (1995).
23 Caprio, M. et al. Pivotal role of the mineralocorticoid receptor in corticosteroid-induced adipogenesis. FASEB journal : official publication of the Federation of American Societies for Experimental Biology 21, 2185-2194 (2007).
24 McCurley, A. et al. Direct regulation of blood pressure by smooth muscle cell mineralocorticoid receptors. Nat Med 18, 1429-1433 (2012).
25 Rickard, A. J. et al. Deletion of mineralocorticoid receptors from macrophages protects against deoxycorticosterone/salt-induced cardiac fibrosis and increased blood pressure. Hypertension (Dallas, Tex. : 1979) 54, 537-543 (2009).
26 Sainte Marie, Y. et al. Targeted Skin Overexpression of the Mineralocorticoid Receptor in Mice Causes Epidermal Atrophy, Premature Skin Barrier Formation, Eye Abnormalities, and Alopecia. The American Journal of Pathology 171, 846-860 (2007).
27 Geller, D. S. et al. Mutations in the mineralocorticoid receptor gene cause autosomal dominant pseudohypoaldosteronism type I. Nat Genet 19, 279-281 (1998).
28 Geller, D. S. et al. Activating mineralocorticoid receptor mutation in hypertension exacerbated by pregnancy. Science (New York, N.Y.) 289, 119-123 (2000).
29 Schafer, N. et al. Endothelial mineralocorticoid receptor activation mediates endothelial dysfunction in diet-induced obesity. European heart journal 34, 3515-3524 (2013).
30 Deuchar, G. A. et al. 11beta-hydroxysteroid dehydrogenase type 2 deficiency accelerates atherogenesis and causes proinflammatory changes in the endothelium in apoe-/- mice. Endocrinology 152, 236-246 (2011).
31 Guo, C. et al. Mineralocorticoid receptor blockade reverses obesity-related changes in expression of adiponectin, peroxisome proliferator-activated receptor-gamma, and proinflammatory adipokines. Circulation 117, 2253-2261 (2008).
32 Luther, J. M. et al. Aldosterone deficiency and mineralocorticoid receptor antagonism prevent angiotensin II-induced cardiac, renal, and vascular injury. Kidney International 82, 643-651 (2012).
33 Tada, Y. et al. Reduction of endothelial tight junction proteins is related to cerebral aneurysm formation in rats. Journal of hypertension 28, 1883-1891 (2010).
34 Deliyanti, D. et al. Neovascularization is attenuated with aldosterone synthase inhibition in rats with retinopathy. Hypertension (Dallas, Tex. : 1979) 59, 607-613 (2012).
35 Zhao, M. et al. Mineralocorticoid receptor is involved in rat and human ocular chorioretinopathy. The Journal of clinical investigation 122, 2672-2679 (2012).
36 Zhao, M. et al. The neuroretina is a novel mineralocorticoid target: aldosterone up-regulates ion and water channels in Muller glial cells. FASEB journal : official publication of the Federation of American Societies for Experimental Biology 24, 3405-3415 (2010).
37 Farman, N. et al. The mineralocorticoid receptor as a novel player in skin biology: beyond the renal horizon? Experimental dermatology 19, 100-107 (2010).
38 Faresse, N. Post-translational modifications of the mineralocorticoid receptor: How to dress the receptor according to the circumstances? The Journal of steroid biochemistry and molecular biology 143, 334-342 (2014).
39 Hay, R. T. SUMO: a history of modification. Molecular cell 18, 1-12 (2005).
40 Wang, Y. & Dasso, M. SUMOylation and deSUMOylation at a glance. Journal of Cell Science 122, 4249-4252 (2009).
41 Flotho, A. & Melchior, F. Sumoylation: a regulatory protein modification in health and disease. Annual review of biochemistry 82, 357-385 (2013).
42 Hendriks, I. A. & Vertegaal, A. C. A comprehensive compilation of SUMO proteomics. Nature reviews. Molecular cell biology 17, 581-595 (2016).
43 Gill, G. SUMO and ubiquitin in the nucleus: different functions, similar mechanisms? Genes & development 18, 2046-2059 (2004).
44 Iniguez-Lluhi, J. A. & Pearce, D. A common motif within the negative regulatory regions of multiple factors inhibits their transcriptional synergy. Molecular and cellular biology 20, 6040-6050 (2000).
45 Lin, D. Y. et al. Negative modulation of androgen receptor transcriptional activity by Daxx. Molecular and cellular biology 24, 10529-10541 (2004).
46 Hu, X. & Lazar, M. A. Transcriptional Repression by Nuclear Hormone Receptors. Trends in Endocrinology & Metabolism 11, 6-10 (2000).
47 Metivier, R., Penot, G., Flouriot, G. & Pakdel, F. Synergism between ERalpha transactivation function 1 (AF-1) and AF-2 mediated by steroid receptor coactivator protein-1: requirement for the AF-1 alpha-helical core and for a direct interaction between the N- and C-terminal domains. Molecular endocrinology (Baltimore, Md.) 15, 1953-1970 (2001).
48 Tetel, M. J., Giangrande, P. H., Leonhardt, S. A., McDonnell, D. P. & Edwards, D. P. Hormone-Dependent Interaction between the Amino- and Carboxyl-Terminal Domains of Progesterone Receptor in Vitro and in Vivo. Molecular Endocrinology 13, 910-924 (1999).
49 Zhou, Z. X., Lane, M. V., Kemppainen, J. A., French, F. S. & Wilson, E. M. Specificity of ligand-dependent androgen receptor stabilization: receptor domain interactions influence ligand dissociation and receptor stability. Molecular endocrinology (Baltimore, Md.) 9, 208-218 (1995).
50 Centenera, M. M., Harris, J. M., Tilley, W. D. & Butler, L. M. The contribution of different androgen receptor domains to receptor dimerization and signaling. Molecular endocrinology (Baltimore, Md.) 22, 2373-2382 (2008).
51 Pippal, J. B., Yao, Y., Rogerson, F. M. & Fuller, P. J. Structural and Functional Characterization of the Interdomain Interaction in the Mineralocorticoid Receptor. Molecular Endocrinology 23, 1360-1370 (2009).
52 Rogerson, F. M. & Fuller, P. J. Interdomain interactions in the mineralocorticoid receptor. Molecular and cellular endocrinology 200, 45-55 (2003).
53 Rogerson, F. M., Brennan, F. E. & Fuller, P. J. Mineralocorticoid receptor binding, structure and function. Molecular and cellular endocrinology 217, 203-212 (2004).
54 Fuller, P. J., Yao, Y., Yang, J. & Young, M. J. Mechanisms of ligand specificity of the mineralocorticoid receptor. The Journal of endocrinology 213, 15-24 (2012).
55 Tirard, M., Almeida, O. F., Hutzler, P., Melchior, F. & Michaelidis, T. M. Sumoylation and proteasomal activity determine the transactivation properties of the mineralocorticoid receptor. Molecular and cellular endocrinology 268, 20-29 (2007).
56 Holmstrom, S., Van Antwerp, M. E. & Iñiguez-Lluhí, J. A. Direct and distinguishable inhibitory roles for SUMO isoforms in the control of transcriptional synergy. Proceedings of the National Academy of Sciences 100, 15758-15763 (2003).
57 Wright, A. P. & Gustafsson, J. A. Mechanism of synergistic transcriptional transactivation by the human glucocorticoid receptor. Proc Natl Acad Sci U S A 88, 8283-8287 (1991).
58 Tsai, S. Y., Tsai, M. J. & O'Malley, B. W. Cooperative binding of steroid hormone receptors contributes to transcriptional synergism at target enhancer elements. Cell 57, 443-448 (1989).
59 Ikonen, T., Palvimo, J. J. & Janne, O. A. Interaction between the amino- and carboxyl-terminal regions of the rat androgen receptor modulates transcriptional activity and is influenced by nuclear receptor coactivators. The Journal of biological chemistry 272, 29821-29828 (1997).
60 Scheller, A., Hughes, E., Golden, K. L. & Robins, D. M. Multiple receptor domains interact to permit, or restrict, androgen-specific gene activation. The Journal of biological chemistry 273, 24216-24222 (1998).
校內:2022-07-20公開