簡易檢索 / 詳目顯示

研究生: 林君為
Lin, Chun-Wei
論文名稱: 利用團鏈共聚物定向自組裝製作金屬奈米共振腔及奈米光柵結構應用於表面增強拉曼散射
Metallic Nano-cavity and Nano-slit Fabricated by Block Copolymer Directed Self-assembly and Their Surface Enhanced Raman Scattering Properties
指導教授: 林俊宏
Lin, Chun-Hung
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 85
中文關鍵詞: 團鏈共聚物自組裝金屬轉印表面增強拉曼散射
外文關鍵詞: surface enhanced Raman scattering, block copolymer directed self-assembly, metal transfer printing
相關次數: 點閱:102下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 受惠於半導體製程的進步,表面增強拉曼散射(Surface-enhanced Raman scattering, SERS)得以利用圖案化的貴金屬基板產生的電場增益效果來解決普通拉曼散射訊號微弱的問題,成為近年來檢測化學、生物分子最常使用的技術。
    本研究利用團鏈共聚物定向自組裝(block copolymer directed self-assembly, BCP-DSA)及金屬轉印技術(metal transfer printing, mTP)製作金屬共振腔結構的SERS基板。透過奈米壓印微影術(nano-imprint lithography)及BCP-DSA的圖案化方法,我們能製作出週期40 nm及線寬15 nm的週期性光柵結構。經金屬轉印及金屬蝕刻,我們得到結構參數一致但基板材質不同的金共振腔及金光柵結構。
    我們透過近場模擬及理論計算來探討結構參數對電場增益的影響,我們所製作的共振腔結構在狹縫處所產生的局部電場增益較光柵結構來的強烈。電場增益的效果同時在SERS量測上獲得驗證,共振腔結構所能偵測的最小R6G(Rhodamine 6G)分子濃度為10-7 M,相較於光柵結構有6倍的SERS訊號增益。我們所製作的SERS基板可簡單的經由金屬濺鍍及金屬轉印製程重現,相較於利用電子束微影的製作方法有較低的製作成本及較大的圖案面積,也較膠體溶液自組裝製作的SERS基板有較佳的再現性。

    In this study, metallic nanocavity array was fabricated as surface enhance Raman scattering (SERS) substrates by block copolymer directed self-assembly (BCP-DSA) and metal transfer (mTP) process. The combination of nanoimprint lithography and BCP-DSA made our patterning method simple and cost-effective. The reproducibility of our SERS substrate was achieved by using mTP method which was rarely mentioned in other’s works. Gold nanocavities with 10 nm gap, 30 nm height and 40 nm period were fabricated by an mTP process. Gold nanoslits with the same dimensions were also fabricated for comparison. The field enhancement properties of nanocavity with different structure were investigated numerically and experimentally. The localize field enhancement in the nanocavity is much stronger than that in the nanoslit. The SERS sensing result greatly agreed with the simulation result. The nanocavity substrate enhanced the SERS signals 5 times higher than the nanoslit substrate. This approach is a promising candidate for SERS substrate fabrication which eliminate trade-off between throughput and reproducibility.

    摘要 I Metallic Nano-cavity and Nano-slit Fabricated by Block Copolymer Directed Self-assembly and Their Surface Enhanced Raman Scattering Properties II 誌謝 VIII 目錄 IX 表次 XII 圖次 XIII 第一章 緒論 1 1.1 前言 1 1.2 研究動機 2 1.3 論文架構 2 第二章 文獻回顧 4 2.1 表面增強拉曼散射 4 2.2 奈米狹縫的電場增益效應 6 2.3 團鏈共聚物定向自組裝 11 第三章 研究方法 23 3.1 奈米共振腔腔電場增益模擬 23 3.2 定向地形結構製作 24 3.2.1 矽母模製作 24 3.2.2 奈米壓印微影術 25 3.2.3 殘餘層去除及結構微縮 28 3.3 團鏈共聚物定向自組裝 28 3.3.1 實驗材料 28 3.3.2 實驗流程 29 3.4 定向自組裝圖案轉移 30 3.4.1 定向自組裝圖案轉移 30 3.4.2 金薄膜沉積與奈米共振腔轉印 30 3.4.3 金薄膜沉積與奈米光柵蝕刻 31 3.5 表面增強拉曼量測 32 3.5.1 實驗儀器 32 3.5.2 實驗方法 32 第四章 結果與討論 40 4.1 奈米共振腔電場增益模擬 40 4.1.1 共振腔狹縫寬度探討 40 4.1.2 共振腔高度探討 41 4.1.3 共振腔開口性質探討 42 4.1.4 共振腔週期探討 43 4.2 團鏈共聚物定向自組裝 44 4.2.1 定向結構 44 4.2.2 溶劑揮發退火 45 4.2.3 溶劑加熱退火 47 4.3 奈米共振腔製作與表面增強拉曼量測 48 4.3.1 圖案轉移至矽基板 49 4.3.2 奈米金共振腔製作 50 4.3.3 奈米光柵製作 51 4.3.4 表面拉曼增益量測與比較 52 第五章 結論與展望 76 5.1 結論 76 5.2 未來展望 76 參考文獻 78

    1. J. W. Jeong, S. R. Yang, Y. H. Hur, S. W. Kim, K. M. Baek, S. Yim, H.-I. Jang, J. H. Park, S. Y. Lee, and C.-O. Park, "High-resolution nanotransfer printing applicable to diverse surfaces via interface-targeted adhesion switching," Nature communications 5, 1-12 (2014).
    2. J. Kubackova, G. Fabriciova, P. Miskovsky, D. Jancura, and S. Sanchez-Cortes, "Sensitive surface-enhanced raman spectroscopy (SERS) detection of organochlorine pesticides by alkyl dithiol-functionalized metal nanoparticles-induced plasmonic hot spots," Analytical chemistry 87, 663-669 (2014).
    3. D. Jimenez de Aberasturi, A. B. Serrano-Montes, J. Langer, M. Henriksen-Lacey, W. J. Parak, and L. M. Liz-Marzán, "Surface enhanced raman scattering encoded gold nanostars for multiplexed cell discrimination," Chemistry of Materials 28, 6779-6790 (2016).
    4. X. Michalet, F. Pinaud, L. Bentolila, J. Tsay, S. Doose, J. Li, G. Sundaresan, A. Wu, S. Gambhir, and S. Weiss, "Quantum dots for live cells, in vivo imaging, and diagnostics," science 307, 538-544 (2005).
    5. D. J. Gardiner, Practical Raman spectroscopy (Springer-Verlag, 1989).
    6. K. Kneipp, Y. Wang, R. R. Dasari, and M. S. Feld, "Approach to single molecule detection using surface-enhanced resonance Raman scattering (SERRS): A study using Rhodamine 6G on colloidal silver," applied spectroscopy 49, 780-784 (1995).
    7. Y. Fang, N.-H. Seong, and D. D. Dlott, "Measurement of the distribution of site enhancements in surface-enhanced Raman scattering," Science 321, 388-392 (2008).
    8. K. L. Wustholz, A.-I. Henry, J. M. McMahon, R. G. Freeman, N. Valley, M. E. Piotti, M. J. Natan, G. C. Schatz, and R. P. V. Duyne, "Structure− activity relationships in gold nanoparticle dimers and trimers for surface-enhanced Raman spectroscopy," Journal of the American Chemical Society 132, 10903-10910 (2010).
    9. W. Rechberger, A. Hohenau, A. Leitner, J. Krenn, B. Lamprecht, and F. Aussenegg, "Optical properties of two interacting gold nanoparticles," Optics Communications 220, 137-141 (2003).
    10. J. Long, H. Yi, H. Li, Z. Lei, and T. Yang, "Reproducible Ultrahigh SERS Enhancement in Single Deterministic Hotspots Using Nanosphere-Plane Antennas Under Radially Polarized Excitation," Scientific Reports 6, 1-8 (2016).
    11. W. Yue, Z. Wang, Y. Yang, L. Chen, A. Syed, K. Wong, and X. Wang, "Electron-beam lithography of gold nanostructures for surface-enhanced Raman scattering," Journal of Micromechanics and Microengineering 22, 125007 (2012).
    12. M. Fleischmann, P. J. Hendra, and A. McQuillan, "Raman spectra of pyridine adsorbed at a silver electrode," Chemical Physics Letters 26, 163-166 (1974).
    13. D. L. Jeanmaire and R. P. Van Duyne, "Surface Raman spectroelectrochemistry: Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode," Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 84, 1-20 (1977).
    14. A. Shiohara, Y. Wang, and L. M. Liz-Marzan, "Recent approaches toward creation of hot spots for SERS detection," Journal of Photochemistry and Photobiology C: Photochemistry Reviews 21, 2-25 (2014).
    15. H. Xu, J. Aizpurua, M. Käll, and P. Apell, "Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering," Physical Review E 62, 4318-4324 (2000).
    16. W.-L. Zhai, D.-W. Li, L.-L. Qu, J. S. Fossey, and Y.-T. Long, "Multiple depositions of Ag nanoparticles on chemically modified agarose films for surface-enhanced Raman spectroscopy," Nanoscale 4, 137-142 (2012).
    17. H.-W. Cheng, S.-Y. Huan, H.-L. Wu, G.-L. Shen, and R.-Q. Yu, "Surface-enhanced Raman spectroscopic detection of a bacteria biomarker using gold nanoparticle immobilized substrates," Analytical chemistry 81, 9902-9912 (2009).
    18. Q. Tong, E. W. Malachosky, J. Raybin, P. Guyot-Sionnest, and S. Sibener, "End-to-End Alignment of Gold Nanorods on Topographically Enhanced, Cylinder Forming Diblock Copolymer Templates and Their Surface Enhanced Raman Scattering Properties," The Journal of Physical Chemistry C 118, 19259-19265 (2014).
    19. X. Hu, Z. Xu, K. Li, F. Fang, and L. Wang, "Fabrication of a Au–polystyrene sphere substrate with three-dimensional nanofeatures for surface-enhanced Raman spectroscopy," Applied Surface Science 355, 1168-1174 (2015).
    20. Y. Nishijima, J. B. Khurgin, L. Rosa, H. Fujiwara, and S. Juodkazis, "Randomization of gold nano-brick arrays: a tool for SERS enhancement," Opt. Express 21, 13502-13514 (2013).
    21. S. Kessentini, D. Barchiesi, C. D’Andrea, A. Toma, N. Guillot, E. Di Fabrizio, B. Fazio, O. M. Maragó, P. G. Gucciardi, and M. Lamy de la Chapelle, "Gold dimer nanoantenna with slanted gap for tunable LSPR and improved SERS," The Journal of Physical Chemistry C 118, 3209-3219 (2014).
    22. Z. Zhou, Z. Zhao, Y. Yu, B. Ai, H. Möhwald, R. C. Chiechi, J. K. Yang, and G. Zhang, "From 1D to 3D: Tunable Sub‐10 nm Gaps in Large Area Devices," Advanced Materials 28, 2956-2963 (2016).
    23. M. Xue, Z. Zhang, N. Zhu, F. Wang, X. Zhao, and T. Cao, "Transfer printing of metal nanoparticles with controllable dimensions, placement, and reproducible surface-enhanced Raman scattering effects," Langmuir 25, 4347-4351 (2009).
    24. S. Y. Lee, S.-H. Kim, M. P. Kim, H. C. Jeon, H. Kang, H. J. Kim, B. J. Kim, and S.-M. Yang, "Freestanding and arrayed nanoporous microcylinders for highly active 3D SERS substrate," Chemistry of Materials 25, 2421-2426 (2013).
    25. A. Otto, "Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection," Zeitschrift für Physik 216, 398-410 (1968).
    26. J. Homola, I. Koudela, and S. S. Yee, "Surface plasmon resonance sensors based on diffraction gratings and prism couplers: sensitivity comparison," Sensors and Actuators B: Chemical 54, 16-24 (1999).
    27. F. Garcia-Vidal and L. Martin-Moreno, "Transmission and focusing of light in one-dimensional periodically nanostructured metals," Physical Review B 66, 155412 (2002).
    28. Y. S. Jung and C. A. Ross, "Orientation-controlled self-assembled nanolithography using a polystyrene-polydimethylsiloxane block copolymer," Nano Letters 7, 2046-2050 (2007).
    29. M. Sobnack, W. Tan, N. Wanstall, T. Preist, and J. Sambles, "Stationary surface plasmons on a zero-order metal grating," Physical review letters 80, 5667-5670 (1998).
    30. H. T. Miyazaki and Y. Kurokawa, "Controlled plasmon resonance in closed metal/insulator/metal nanocavities," Applied physics letters 89, 211126-211121-211126-211123 (2006).
    31. A. Moreau, C. Lafarge, N. Laurent, K. Edee, and G. Granet, "Enhanced transmission of slit arrays in an extremely thin metallic film," Journal of Optics A: Pure and Applied Optics 9, 165 (2007).
    32. J. Le Perchec, P. Quemerais, A. Barbara, and T. Lopez-Rios, "Why metallic surfaces with grooves a few nanometers deep and wide may strongly absorb visible light," Physical review letters 100, 066408 (2008).
    33. A. Polyakov, S. Cabrini, S. Dhuey, B. Harteneck, P. Schuck, and H. Padmore, "Plasmonic light trapping in nanostructured metal surfaces," Applied Physics Letters 98, 203104 (2011).
    34. B. J. Lin, Optical lithography : here is why (SPIE,Bellingham,Wash.
    , 2009).
    35. C. Bode, B. Ko, and T. Edgar, "Run-to-run control and performance monitoring of overlay in semiconductor manufacturing," Control engineering practice 12, 893-900 (2004).
    36. A. Alan, "More Moore
    " in International Technology Roadmap For Semiconductor, (ITRS, 2015),
    37. Y. Mai and A. Eisenberg, "Self-assembly of block copolymers," Chemical Society Reviews 41, 5969-5985 (2012).
    38. F. S. Bates and G. H. Fredrickson, "Block copolymer thermodynamics: theory and experiment," Annual Review of Physical Chemistry 41, 525-557 (1990).
    39. T. Iwao, "Polymer solutions: An introduction to physical properties," (New York: Wiley, 2002).
    40. L. Leibler, "Theory of microphase separation in block copolymers," Macromolecules 13, 1602-1617 (1980).
    41. P. J. Flory, "Thermodynamics of high polymer solutions," The Journal of chemical physics 10, 51-61 (1942).
    42. Y. Mai, F. Zhang, and X. Feng, "Polymer-directed synthesis of metal oxide-containing nanomaterials for electrochemical energy storage," Nanoscale 6, 106-121 (2014).
    43. U. Weak, "and Strong-Segregation Block Copolymer Theories Matsen, MW; Bates, FS," Macromolecules 29, 1091-1098 (1996).
    44. C. Tang, A. Tracz, M. Kruk, R. Zhang, D.-M. Smilgies, K. Matyjaszewski, and T. Kowalewski, "Long-range ordered thin films of block copolymers prepared by zone-casting and their thermal conversion into ordered nanostructured carbon," Journal of the American Chemical Society 127, 6918-6919 (2005).
    45. S. H. Kim, M. J. Misner, T. Xu, M. Kimura, and T. P. Russell, "Highly oriented and ordered arrays from block copolymers via solvent evaporation," Advanced Materials 16, 226-231 (2004).
    46. J. Peng, Y. Xuan, H. Wang, Y. Yang, B. Li, and Y. Han, "Solvent-induced microphase separation in diblock copolymer thin films with reversibly switchable morphology," The Journal of chemical physics 120, 11163-11170 (2004).
    47. R. A. Segalman, H. Yokoyama, and E. J. Kramer, "Graphoepitaxy of spherical domain block copolymer films," Advanced Materials 13, 1152-1155 (2001).
    48. X. M. Yang, R. D. Peters, P. F. Nealey, H. H. Solak, and F. Cerrina, "Guided self-assembly of symmetric diblock copolymer films on chemically nanopatterned substrates," Macromolecules 33, 9575-9582 (2000).
    49. L. Rockford, Y. Liu, P. Mansky, T. Russell, M. Yoon, and S. Mochrie, "Polymers on nanoperiodic, heterogeneous surfaces," Physical review letters 82, 2602 (1999).
    50. G. Liu, F. o. Detcheverry, A. Ramírez-Hernández, H. Yoshida, Y. Tada, J. J. de Pablo, and P. F. Nealey, "Nonbulk complex structures in thin films of symmetric block copolymers on chemically nanopatterned surfaces," Macromolecules 45, 3986-3992 (2012).
    51. P. Chen, H. Liang, R. Xia, J. Qian, and X. Feng, "Directed self-assembly of block copolymers on sparsely nanopatterned substrates," Macromolecules 46, 922-926 (2013).
    52. D. Borah, S. Rasappa, M. Salaun, M. Zellsman, O. Lorret, G. Liontos, K. Ntetsikas, A. Avgeropoulos, and M. A. Morris, "Soft Graphoepitaxy for Large Area Directed Self‐Assembly of Polystyrene‐block‐Poly (dimethylsiloxane) Block Copolymer on Nanopatterned POSS Substrates Fabricated by Nanoimprint Lithography," Advanced Functional Materials 25, 3425-3432 (2015).
    53. C. Harrison, P. M. Chaikin, D. A. Huse, R. A. Register, D. H. Adamson, A. Daniel, E. Huang, P. Mansky, T. Russell, and C. J. Hawker, "Reducing substrate pinning of block copolymer microdomains with a buffer layer of polymer brushes," Macromolecules 33, 857-865 (2000).
    54. C. Girardot, S. Böhme, S. Archambault, M. Salaün, E. Latu-Romain, G. Cunge, O. Joubert, and M. Zelsmann, "Pulsed transfer etching of PS–PDMS block copolymers self-assembled in 193 nm lithography stacks," ACS applied materials & interfaces 6, 16276-16282 (2014).
    55. S.-M. Park, X. Liang, B. D. Harteneck, T. E. Pick, N. Hiroshiba, Y. Wu, B. A. Helms, and D. L. Olynick, "Sub-10 nm nanofabrication via nanoimprint directed self-assembly of block copolymers," ACS nano 5, 8523-8531 (2011).
    56. J. W. Jeong, W. I. Park, M.-J. Kim, C. Ross, and Y. S. Jung, "Highly tunable self-assembled nanostructures from a poly (2-vinylpyridine-b-dimethylsiloxane) block copolymer," Nano letters 11, 4095-4101 (2011).
    57. A. M. Welander, H. Kang, K. O. Stuen, H. H. Solak, M. Müller, J. J. de Pablo, and P. F. Nealey, "Rapid directed assembly of block copolymer films at elevated temperatures," Macromolecules 41, 2759-2761 (2008).
    58. J. Bang, U. Jeong, D. Y. Ryu, T. P. Russell, and C. J. Hawker, "Block copolymer nanolithography: translation of molecular level control to nanoscale patterns," Advanced Materials 21, 4769-4792 (2009).
    59. I. In, Y.-H. La, S.-M. Park, P. F. Nealey, and P. Gopalan, "Side-chain-grafted random copolymer brushes as neutral surfaces for controlling the orientation of block copolymer microdomains in thin films," Langmuir 22, 7855-7860 (2006).
    60. W. Bai, A. F. Hannon, K. W. Gotrik, H. K. Choi, K. Aissou, G. Liontos, K. Ntetsikas, A. Alexander-Katz, A. Avgeropoulos, and C. A. Ross, "Thin film morphologies of bulk-gyroid polystyrene-block-polydimethylsiloxane under solvent vapor annealing," Macromolecules 47, 6000-6008 (2014).
    61. W. I. Park, K. Kim, H. I. Jang, J. W. Jeong, J. M. Kim, J. Choi, J. H. Park, and Y. S. Jung, "Directed Self‐Assembly with Sub‐100 Degrees Celsius Processing Temperature, Sub‐10 Nanometer Resolution, and Sub‐1 Minute Assembly Time," Small 8, 3762-3768 (2012).
    62. K. W. Gotrik and C. A. Ross, "Solvothermal Annealing of Block Copolymer Thin Films," Nano Letters 13, 5117-5122 (2013).
    63. J. M. Kim, Y. Kim, W. I. Park, Y. H. Hur, J. W. Jeong, D. M. Sim, K. M. Baek, J. H. Lee, M. J. Kim, and Y. S. Jung, "Eliminating the Trade‐Off between the Throughput and Pattern Quality of Sub‐15 nm Directed Self‐Assembly via Warm Solvent Annealing," Advanced Functional Materials 25, 306-315 (2015).
    64. J. K. Yang, Y. S. Jung, J.-B. Chang, R. Mickiewicz, A. Alexander-Katz, C. Ross, and K. K. Berggren, "Complex self-assembled patterns using sparse commensurate templates with locally varying motifs," Nature nanotechnology 5, 256-260 (2010).
    65. J.-B. Chang, H. K. Choi, A. F. Hannon, A. Alexander-Katz, C. A. Ross, and K. K. Berggren, "Design rules for self-assembled block copolymer patterns using tiled templates," Nature communications 5(2014).
    66. C. K. Jeong, K. M. Baek, S. Niu, T. W. Nam, Y. H. Hur, D. Y. Park, G.-T. Hwang, M. Byun, Z. L. Wang, and Y. S. Jung, "Topographically-designed triboelectric nanogenerator via block copolymer self-assembly," Nano letters 14, 7031-7038 (2014).
    67. Z. L. Wang, J. Chen, and L. Lin, "Progress in triboelectric nanogenerators as a new energy technology and self-powered sensors," Energy & Environmental Science 8, 2250-2282 (2015).
    68. Y. Wang, M. Becker, L. Wang, J. Liu, R. Scholz, J. Peng, U. Gösele, S. Christiansen, D. H. Kim, and M. Steinhart, "Nanostructured gold films for SERS by block copolymer-templated galvanic displacement reactions," Nano letters 9, 2384-2389 (2009).
    69. Y. Shen, Y. Liu, W. Wang, F. Xu, C. Yan, J. Zhang, J. Wang, and A. Yuan, "Au nanocluster arrays on self-assembled block copolymer thin films as highly active SERS substrates with excellent reproducibility," RSC Advances 6, 38716-38723 (2016).
    70. C.-H. Lin, H.-L. Chen, W.-C. Chao, C.-I. Hsieh, and W.-H. Chang, "Optical characterization of two-dimensional photonic crystals based on spectroscopic ellipsometry with rigorous coupled-wave analysis," Microelectronic engineering 83, 1798-1804 (2006).
    71. W.-Y. Chen and C.-H. Lin, "A standing-wave interpretation of plasmon resonance excitation in split-ring resonators," Opt. Express 18, 14280-14292 (2010).
    72. S.-W. Youn, A. Ueno, M. Takahashi, and R. Maeda, "Microstructuring of SU-8 photoresist by UV-assisted thermal imprinting with non-transparent mold," Microelectronic Engineering 85, 1924-1931 (2008).
    73. S.-H. G. Chang and C.-Y. Sun, "Avoided resonance crossing and non-reciprocal nearly perfect absorption in plasmonic nanodisks with near-field and far-field couplings," Opt. Express 24, 16822-16834 (2016).
    74. G. Reiter, "Visualizing properties of polymers at interfaces," in Soft Matter Characterization (Springer, 2008), pp. 1243-1292.
    75. H. Hu, M. Gopinadhan, and C. O. Osuji, "Directed self-assembly of block copolymers: a tutorial review of strategies for enabling nanotechnology with soft matter," Soft matter 10, 3867-3889 (2014).
    76. T. Hashimoto, M. Shibayama, and H. Kawai, "Ordered structure in block polymer solutions. 4. Scaling rules on size of fluctuations with block molecular weight, concentration, and temperature in segregation and homogeneous regimes," Macromolecules 16, 1093-1101 (1983).
    77. P. de Gennes, "Conformations of polymers attached to an interface," Macromolecules 13, 1069-1075 (1980).
    78. D. Koenhen and C. Smolders, "The determination of solubility parameters of solvents and polymers by means of correlations with other physical quantities," Journal of Applied Polymer Science 19, 1163-1179 (1975).
    79. J. N. Lee, C. Park, and G. M. Whitesides, "Solvent compatibility of poly (dimethylsiloxane)-based microfluidic devices," Analytical chemistry 75, 6544-6554 (2003).
    80. Y. S. Jung and C. A. Ross, "Solvent-Vapor-Induced Tunability of Self-Assembled Block Copolymer Patterns," Advanced Materials 21, 2540-2545 (2009).
    81. N. L. Wu, K. D. Harris, and J. M. Buriak, "Conversion of bilayers of PS-b-PDMS block copolymer into closely packed, aligned silica nanopatterns," Acs Nano 7, 5595-5606 (2013).
    82. O. Balachova, M. Alves, J. Swart, E. Braga, and L. Cescato, "CF 4 plasma etching of materials used in microelectronics manufacturing," Microelectronics journal 31, 213-215 (2000).
    83. J. H. Shin, H. G. Kim, G. M. Baek, R. Kim, S. Jeon, J. H. Mun, Y. S. Jung, S. O. Kim, K. N. Kim, and G. Y. Yeom, "Fabrication of 50 nm scale Pt nanostructures by block copolymer (BCP) and its characteristics of surface-enhanced Raman scattering (SERS)," RSC Advances 6, 70756-70762 (2016).
    84. C. Zhu, G. Meng, P. Zheng, Q. Huang, Z. Li, X. Hu, X. Wang, Z. Huang, F. Li, and N. Wu, "A Hierarchically Ordered Array of Silver‐Nanorod Bundles for Surface‐Enhanced Raman Scattering Detection of Phenolic Pollutants," Advanced Materials (2016).
    85. K. Yao, X. Li, Y. Zhao, W. Lu, J. Wang, and J. Yuan, "Facile interfacial synthesis of large sized 3D gold spherical architectures with strong individual particle SERS response and high reproducibility," Journal of Materials Chemistry C 3, 10154-10163 (2015).
    86. T. Siegfried, L. Wang, Y. Ekinci, O. J. Martin, and H. Sigg, "Metal double layers with sub-10 nm channels," ACS nano 8, 3700-3706 (2014).
    87. Y. J. Oh and K. H. Jeong, "Glass Nanopillar Arrays with Nanogap‐Rich Silver Nanoislands for Highly Intense Surface Enhanced Raman Scattering," Advanced Materials 24, 2234-2237 (2012).
    88. A. A. Abate, G. T. Vu, A. D. Pezzutti, N. A. García, R. L. Davis, F. Schmid, R. A. Register, and D. A. Vega, "Shear-Aligned Block Copolymer Monolayers as Seeds To Control the Orientational Order in Cylinder-Forming Block Copolymer Thin Films," Macromolecules 49, 7588-7596 (2016).

    下載圖示 校內:2022-02-11公開
    校外:2022-02-11公開
    QR CODE