| 研究生: |
詹昇勳 Chan, Sheng-Hsun |
|---|---|
| 論文名稱: |
2-氯吡嘧啶在銅(100)和氧/銅(100)表面上的熱反應研究 Thermal Chemistry of 2-Chloropyrimidine on Cu(100) and O/Cu(100) Surfaces |
| 指導教授: |
林榮良
Lin, Jong-Liang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 67 |
| 中文關鍵詞: | 程序控溫反應/脫附 、反射-吸收紅外光譜學 、X-光光電子譜學 、銅(100) 、2-氯吡嘧啶 |
| 外文關鍵詞: | 2-chloropyrimidine, Temperature-programmed reaction/desorption (TPR/D), Reflection-absorption infrared spectroscopy (RAIRS), X-ray photoelectron spectroscopy (XPS), Cu(100) |
| 相關次數: | 點閱:96 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要
本篇論文是在超高真空系統(Ultrahigh vacuum, UHV)中,利用程序控溫反應/脫附(Temperature-programmed reaction/desorption, TPR/D)、反射-吸收紅外光譜學(Reflection-absorption infrared spectroscopy, RAIRS)和X-光光電子譜學(X-ray photoelectron spectroscopy, XPS)探討2-chloropyrimidine在Cu(100)和O/Cu(100)的吸附與熱反應。
在Cu(100)表面,2-chloropyrimidine在140 K會以N原子的孤對電子和Cu表面產生作用進行吸附。在約200 K,此分子的C-Cl鍵開始斷鍵,形成中間物2-pyrimidyl,透過N原子和C2原子化學鍵結於表面。升溫至480 K左右,發現有pyrimidine的脫附,此結果進一步支持有未發生環破裂的2-pyrimidyl中間物存在,但大於480 K,XPS和RAIRS的結果指出pyrimidyl的芳香環以開環。在587 K,測得H2產生,應該來自開環物種的C-H鍵斷裂,然後H原子互相反應形成H2,升溫到~740 K產生HCN,繼續加熱到900 K以上則有C2N2的脫附。
140 K時,2-chloropyrimidine在O/Cu(100)表面與在Cu(100)表面的吸附模式一樣。約200 K,此分子的C-Cl開始斷鍵,表面上的O原子似乎會和C2原子產生鍵結,形成不同於pyrimidyl的新中間物。在227 K有水的產生,是因為銅表面的OH耦合產生。在約480 K,測得H2O、CO2的脫附,表示氧原子的存在,造成熱反應路徑的改變,環破裂提早發生,500 K開始有H2的產生,是環破裂且分解後碎片分子斷C-H鍵之結果。在700 K左右,這些碎片中間物持續反應,生成NO、HCNO、HCN、CO2、CO、N2。超過900 K以上,C2N2生成並脫附。
SUMMARY
The thermal chemistry of 2-chloropyrimidine on Cu(100) and O/Cu(100) surfaces was studied by using temperature-programmed reaction/desorption (TPR/D), X-ray photoelectron spectroscopy (XPS) and reflection-adsorption infrared spectroscopy (RAIRS) conducted in an ultrahigh vacuum chamber.
2-chloropyrimidine is molecularly adsorbed on Cu(100) at 140 K. When the copper is heated to 200 K, cleavage of C-Cl bond occurs and 2-pyrimidyl is generated on the surface. Upon heating to ~480 K, pyrimidine evolves, which further supports the presence of the pyrimidyl intermediate, with the aromatic ring remaining intact. However XPS and RAIRS results suggest that opening of the pyrimidyl ring occurs at a temperature higher than 480 K. H2 desorbs mainly at 587 K, which due to C-H bond dissociation of the ring-opening species. Further heating to ~740 K results in the formation of HCN. C2N2 desorption is observed above 900 K, due to coupling of CN groups.
On oxygen-precovered Cu(100), 2-chloropyrimidine is also molecularly absorbed at 140 K. At 200 K, the C-Cl bond begins to break and the adsorbed O atoms seem to chemically attach to the C2 atoms, forming a new intermediate different from 2-pyrimidyl. Desorption of H2O and CO2 is measured around 480 K, indicating ring breakage occurs on O/Cu(100) is easier than on Cu(100), showing that there is a change in the thermal reaction path of the pyrimidine ring. The surface fragments resulted from the ring-opening of the oxygen-containing pyrimidyl intermediate continue to react on the surface, producing H2 at 500 K and producing NO, HCNO, HCN, CO2, CO and N2 at ~700 K. Above 900 K, C2N2 desorb from surface.
Keywords: 2-chloropyrimidine, Temperature-programmed reaction/desorption (TPR/D), Reflection-absorption infrared spectroscopy (RAIRS), X-ray photoelectron spectroscopy (XPS), Cu(100)
1. Somorjai, G.; Li, Y. Introduction to Surface Chemistry and Catalysis; Wiley: Hoboken, N.J., 2010.
2. Gregg, S.; Sing, K. Adsorption, Surface Area and Porosity; Academic Press: London, 1995.
3. Christmann, K.; Ertl, G.; Pignet, T. Adsorption of Hydrogen on A Pt(111) Surface. Surface Science 1976, 54, 365-392.
4. Ibach, H. Physics of Surfaces and Interfaces; Springer: Berlin, 2010.
5. Rasheeda, K.; Alva, V.; Krishnaprasad, P.; Samshuddin, S. Pyrimidine Derivatives as Potential Corrosion Inhibitors for Steel in Acid Medium – An Overview. International Journal of Corrosion and Scale Inhibition 2018.
6. Storchi, L.; Tarantelli, F.; Veronesi, S.; Bolognesi, P.; Fainelli, E.; Avaldi, L. The Auger Spectroscopy of Pyrimidine and Halogen-Substituted Pyrimidines. The Journal of Chemical Physics 2008, 129, 154309.
7. Loto, R. Pyrimidine Derivatives as Environmentally-Friendly Corrosion Inhibitors: A Review. International Journal of the Physical Sciences 2012, 7.
8. Verma, C.; Olasunkanmi, L.; Ebenso, E.; Quraishi, M.; Obot, I. Adsorption Behavior of Glucosamine-Based, Pyrimidine-Fused Heterocycles as Green Corrosion Inhibitors for Mild Steel: Experimental and Theoretical Studies. The Journal of Physical Chemistry C 2016, 120, 11598-11611.
9. Lebrini, M.; Robert, F.; Vezin, H.; Roos, C. Electrochemical and Quantum Chemical Studies of Some Indole Derivatives as Corrosion Inhibitors for C38 Steel in Molar Hydrochloric Acid. Corrosion Science 2010, 52, 3367-3376.
10. Bégouin, J.; Gosmini, C. Cobalt-Catalyzed Cross-Coupling between in Situ Prepared Arylzinc Halides and 2-Chloropyrimidine or 2-Chloropyrazine. The Journal of Organic Chemistry 2009, 74, 3221-3224.
11. Awad, H.; Abdel Gawad, S. Mechanism of Inhibition of Iron Corrosion In Hydrochloric Acid by Pyrimidine and Series of Its Derivatives. Anti-Corrosion Methods and Materials 2005, 52, 328-336.
12. Khaled, K.; Hamed, M.; Abdel-Azim, K.; Abdelshafi, N. Inhibition of Copper Corrosion in 3.5% NaCl Solutions by A New Pyrimidine Derivative: Electrochemical and Computer Simulation Techniques. Journal of Solid State Electrochemistry 2010, 15, 663-673.
13. Doughty, A.; Mackie, J. Kinetics of Thermal Decomposition of The Diazines: Shock-Tube Pyrolysis of Pyrimidine. Journal of the Chemical Society, Faraday Transactions 1994, 90, 541.
14. King, D. Thermal Desorption from Metal Surfaces: A Review. Surface Science 1975, 47, 384-402.
15. Redhead, P. Thermal Desorption of Gases. Vacuum 1962, 12, 203-211.
16. Lin, J. Carbon-Halogen Bond Dissociation at Copper Surface: Alkyl Radicals versus Metal Alkyls, Columbia University, New York, 1993.
17. Vickerman, J. Surface Analysis: The Principal Techniques; Wiley: Chichester, 2009.
18. Chesters, M. Infrared Spectroscopy of Molecules on Metal Single-Crystal Surfaces. Journal of Electron Spectroscopy and Related Phenomena 1986, 38, 123-140.
19. Chen, C.; Chang, P.; Kuo, K.; Shih, J.; Lin, J. Thermal Decomposition and Adsorption Orientation of 2-Fluoroethanol on Clean and Oxidized Cu(100). The Journal of Physical Chemistry B 2003, 107, 10488-10493.
20. Sexton, B. Surface Vibrations of Adsorbed Intermediates in The Reaction of Alcohols with Cu(100). Surface Science 1979, 88, 299-318.
21. NIST Chemistry WebBook https://webbook.nist.gov/chemistry/ (accessed Jun 30, 2019).
22. Yang, Z.; Chen, S.; Lee, S.; Chen, T.; Lin, J. Comparative Study on The Reaction Pathways of 2-Chloropropanoic Acid on Cu(100) and O/Cu(100). The Journal of Physical Chemistry C 2016, 121, 315-323.
23. Chorkendorff, I.; Rasmussen, P. Reconstruction of Cu(100) by Adsorption of Atomic Hydrogen. Surface Science 1991, 248, 35-44.
24. 陳柚鈞.吡咯及嘧啶在銅(100)和氧/銅(100)表面的吸附與反應研究. 國立成功大學, 台南市, 2018.
25. Celio, H.; Mills, P.; Jentz, D.; Pae, Y.; Trenary, M. Molecular Adsorption of HCN on Pt(111) and Cu(100). Langmuir 1998, 14, 1379-1383.
26. Carley, A.; Chinn, M.; Parkinson, C. The Adsorption and Oxidation of Cyanogen on Copper Surfaces. Surface Science 2003, 537, 64-74.
27. Outka, D.; Jorgensen, S.; Friend, C.; Madix, R. Adsorption and Reaction of Cyanogen on Clean and Oxygen-Dosed Cu(110) Surfaces. Journal of Molecular Catalysis 1983, 21, 375-387.
28. Solymosi, F.; Kiss, J. Interaction of C2N2 with Clean and Oxygen Dosed Cu(111) Surface Studied By AES, ELS And TDS Measurements. Surface Science Letters 1981, 108, A270.
29. Sexton, B. A.; Hughes, A. E., A Comparison of Weak Molecular Adsorption of Organic Molecules on Clean Copper and Platinum Surfaces. Surface Science 1984, 140, 227-248.
30. Brosseau, R.; Brustein, M. R.; Ellis, T. H., Water Adsorption on Cu(100): The Effect of Defects. Surface Science 1993, 294, 243-250.
31. Sueyoshi, T.; Sasaki, T.; Iwasawa, Y., Oxygen Atoms on Cu(100) Formed at 100 K, Active for Co Oxidation and Water−Hydrogen Abstraction, Characterized by Hreels and Tpd. The Journal of Physical Chemistry B 1997, 101, 4648-4655.
32. Li, S.; Yang, Z.; Chen, S.; Lee, S.; Lin, J. Comparison of The Chemistry of ClCH2CH(CH3)OH And ClCH2CH2CH2OH on Cu(100) and O/Cu(100). The Journal of Physical Chemistry C 2016, 120, 9826-9835.
33. Bolognesi, P.; Mattioli, G.; O’Keeffe, P.; Feyer, V.; Plekan, O.; Ovcharenko, Y.; Prince, K.; Coreno, M.; Amore Bonapasta, A.; Avaldi, L. Investigation of Halogenated Pyrimidines by X-Ray Photoemission Spectroscopy and Theoretical DFT Methods. The Journal of Physical Chemistry A 2009, 113, 13593-13600.
34. Zhao, Q.; Deng, R.; Zaera, F. Formation of An Oxametallacycle Surface Intermediate via Thermal Activation of 1-Chloro-2-Methyl-2-Propanol on Ni(100). The Journal of Physical Chemistry C 2010, 114, 7913-7919.
35. Sexton, B.; Hughes, A. A Comparison of Weak Molecular Adsorption of Organic Molecules on Clean Copper and Platinum Surfaces. Surface Science Letters 1984, 140, A163.
36. Zhao, B.; Zaera, F. Adsorption and Thermal Conversion of 2-Iodoethanol on Ni(100) Surfaces: Hydroxyalkyls and Oxametallacycles as Key Intermediates During The Catalytic Oxidation of Hydrocarbons. The Journal of Physical Chemistry B 2003, 107, 9047-9055.
37. Sarma, Y. Planar Vibrations of 2-Chloropyrimidine. Spectrochimica Acta Part A: Molecular Spectroscopy 1974, 30, 1801-1806.
38. Davies, J.; Jabeen, N. The Adsorption of Herbicides and Pesticides on Clay Minerals and Soils. Part 2. Atrazine. J. Incl. Phenom. Macro. 2003, 46, 57-64.