簡易檢索 / 詳目顯示

研究生: 蔡杭助
Tasi, Hang-Chu
論文名稱: 結合基因演算法與離散事件模擬求解即時性平行機台之派工規劃問題
A hybrid genetic algorithms and discrete-event simulation method in solving a real-time parallel machines dispatching problem
指導教授: 楊大和
Yang, Ta-Ho
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 製造工程研究所
Institute of Manufacturing Engineering
論文出版年: 2002
畢業學年度: 90
語文別: 中文
論文頁數: 77
中文關鍵詞: 離散事件模擬銲線區換模基因演算法
外文關鍵詞: Discrete-event Simulation, Wire Bonding, Setup, Genetic Algorithm
相關次數: 點閱:86下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 半導體產品種類多、變異性大,造成以代工為主的封裝業面臨少量多樣的快速反應生產模式,因此其完工時間必須有效縮短,客戶滿意度也必須進一步提升,以符合市場要求。銲線區多為半導體封裝廠的瓶頸工作站,其加工時間長、機台數量多,若是排程或派工決策不良,將導致系統資源浪費,並造成系統流程阻塞,進而影響其他相關工作站,因此在不同產品投料量及有效分配資源的前提下,現場管理者必須即時的分配資源以應付產品快速轉換的需求,以達到即時性的排程與派工規劃。本研究提出結合基因演算法與離散事件模擬求解平行機台支派工問題,並以一封裝廠實際案例來驗證此方法的適用性,以作為實際工廠訂定決策的參考依據。

    As there are varieties of semiconductor products, and they have a large variation on the specifications, the subcontractors whose major business is packing face a production mode of fast reaction to meet the request of diversification and small quantity. They must work very efficiently so that shorten their finish period, and also increase customer’s service level further in order to meet the market demand. In most cases, wire bonding is a bottleneck workstation for the semiconductor packing plants. The process time is so long, and the process requires many machines. Improper scheduling or dispatch might result in a waste on system resource, and a jam on the system flow, and then affects the relevant workstations. Therefore, under a premise of different input for each product and for efficient resource allocation, an administrator must to assign the resource immediately in order to meet the demand of fast change on the products, and to achieve the scheme of prompt scheduling and dispatching. This research is to suggest a model that combine genetic algorithm with discrete-event simulation in solving a real-time dispatching planning problem of parallel machines workstation . Eventually use a packing plant as the actual case to prove the practicability of the method. The plants may refer to this method to make their policy decision.

    目錄 中 文 摘 要 i Abstract ii 誌 謝 iii 目 錄 iv 圖 目 錄 vii 表 目 錄 viii 第一章 緒論 1 1.1 研究背景 1 1.2 研究動機與目的 1 1.3 研究範圍、方法與流程 3 1.4 論文架構 4 第二章 文獻探討 6 2.1 半導體封裝製程簡介 6 2.2 排程派工與換模 9 2.3 基因演算法 13 2.3.1 基因演算法簡介 13 2.3.2 基因演算法應用 18 2.4 離散事件模擬 19 2.4.1 模擬介紹 19 2.4.2 模擬應用 19 第三章 模式建立 21 3.1 建構流程 21 3.1.1 派工流程說明 23 3.1.2 基因演算法參數設定 25 3.2 建構模擬模式 27 3.3 衡量指標 31 第四章 案例應用 32 4.1 案例描述 32 4.2 資料蒐集 33 4.3 實驗設計 35 4.3.1 Flow Time實驗設計 36 4.3.2 Service Level實驗設計 38 4.4 結果分析與討論 40 4.4.1 實驗結果 41 4.4.1.1 Flow Time實驗結果 41 4.4.1.2 Service Level實驗結果 43 4.4.2 分析與討論 44 第五章 結論與建議 50 5.1 結論 50 5.2 未來研究建議 51 參考文獻 53 附錄A 實驗設計(一)染色體分佈-以Flow Time為目標 55 附錄B 實驗結果染色體分佈-以Flow Time為目標 62 附錄C 投入量(67, 68, 0)擴增實驗之染色體分佈 66 附錄D eM-plant模擬模式相關語法 68

    參考文獻
    曾珞萍,以反應曲面法尋找多目標模擬模式之最佳解—以半導體封裝廠印字區為例,國立成功大學製造工程研究所,碩士論文,民國89年。
    台灣半導體協會,TSIA新聞資料,2001,網站,http://www.tsia.org.tw/industry/news.asp?Job=Read&NewsID=16
    Michael, P., 1961, Scheduling Theory, Algorithm, and Systems, Prentice Hall, Englewood, New Jersey 07632.
    Blackstone, J.H., Philips, D. T. and Hogg, G. I., 1982, A state-of-the-art survey of dispatching rules for manufacturing job shop operation, International Journal of Production Research, Vol. 20, No. 1, pp. 27-45.
    Brun, A. and Portioli, A., 1999, Agent-Based Shop-Floor Scheduling of Multistage Systems, Computers and Industrial Engineering, Vol. 37, pp. 457-460.
    Chen, B., 1993, A Better Heuristic for Preemptive Parallet Machine Scheduling with Batch Setup times, SIAM J Compute, Vol. 22, pp. 1303-1318.
    Cook, D. P., 1994, A Simulation Comparison of Traditional, JIT and TOC
    Manufacturing System in a Flow Shop with Bottlenecks, Production and Inventory Management Journal, Vol. 1, pp. 73-78.
    Deosthali, P. and Gardel, A., 1990, Using Simulation in Semiconductor Fabrication, Advanced semiconductor Manufacturing Conference and Workshop, pp. 22-26.
    Farhad, A. and George, T., 1999, Simulation optimization with qualitative variablesand structural model changes: A genetic algorithm approach, European Journal of Operational Research, Vol. 113, pp. 169-182.
    Garey, M. R. and Johnson, D. S., 1979, Computers and Intractability:A Guide to the Theory of NP-completeness, Freeman, San Francisco.
    Graves, S. C., 1983, Scheduling of Re-Entrant Flow Shops, International Journal of Operations Management, Vol. 3, No. 4, pp. 197-207.
    Gupta, J.N.D., 1988, Single Facility Scheduling with Multiple Job Classes, European Journal of Operational Research, Vol. 8, pp. 42-45.
    Hemant Kumar, N. S. and Srinivasan, G., 1996, A genetic algorithm for job shop scheduling-A case study, Computers in Industry, Vol. 31, pp. 155-160.
    Holland, J., 1975, Adaptation in natural and artificial systems, University of Michigan Press, Ann Arbor.
    Hong, Z., Yuncheng, F. and Limin, H., 2001, The hybrid heuristic genetic algorithm for job shop scheduling, Computers and Industrial Engineering, Vol. 40, pp. 191-200.
    Lazzerini, B. and Marcelloni , F., 2000, A genetic algorithm for generating optimal assembly plans, Artificial Intelligence in Engineering, Vol. 14, pp. 319-329.
    Man, K. F., Tang, K. S. and Kwong, S., 1996, Genetic Algorithms: Concepts and Applications, IEEE Transactions On Industrial Electronics, Vol. 43, No. 5, pp. 519-533.
    Monma, C. L. and Potts, C. N., 1989, On the Complexity of Scheduling with Batch Setup Times, Operations Research, Vol. 37, pp. 798-804.
    Murata, T. and Ishibuchi, H., 1994, Peformance evaluation of genetic algorithms for flowshop scheduling problems, IEEE International Conference on Robotics and Automation, Vol. 1, pp. 812-817.
    Oliver, H. and Chandrasekharan, R., 1997, Efficient dispatching rules for scheduling in a job shop, International Journal of Production Economics, Vol. 48, pp. 87-105.
    Pierreval, H. and Tautou, L., 1997, Using Evolutionary algorithms and simulation for the optimization of manufacturing systems, IIE Transactions on IE Research, Vol. 29, No. 3, pp. 181-189.
    Paris, J. L. and Pierreval, H., 2001, A distributed evolutionary simulation optimization approach for the configuration of multiproduct kanban systems, International Journal of Computer Integrated manufacturing, Vol. 14, No. 5, pp. 421-430.

    下載圖示 校內:立即公開
    校外:2002-07-04公開
    QR CODE